Claude Code Plugins

Community-maintained marketplace

Feedback

Token-efficient documentation search using Serena Document Index. 90%+ token savings vs reading full files. Use BEFORE reading README.md or docs/ files. Triggers on architecture questions, pattern lookups, and project-specific documentation needs.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name doc-search
description Token-efficient documentation search using Serena Document Index. 90%+ token savings vs reading full files. Use BEFORE reading README.md or docs/ files. Triggers on architecture questions, pattern lookups, and project-specific documentation needs.

Document Search

Search project documentation efficiently using the Serena Document Index system.

Why This Matters

Approach Tokens Use Case
Read full README.md 3000-8000 Never (wasteful)
Read docs/*.md 2000-5000 each Rarely needed
Document Index Search 100-500 Always prefer
Section Retrieval 200-800 After finding relevant section

Rule: Never read documentation files until the document index fails to answer.

Document Index Location

.serena/cache/documents/document_index.json

Index Types Available:

  • tag_index - Search by tags (architecture, api, testing, etc.)
  • title_index - Search by section titles
  • project_index - Filter by project (basecamp-server, interface-cli, etc.)
  • doc_type_index - Filter by document type (readme, guide, api-reference, etc.)
  • content_index - Keyword-based content search

Workflow Pattern

Step 1: Search Document Index (Python CLI)

# Search for relevant documentation sections
cd /Users/kun/github/1ambda/dataops-platform
python3 scripts/serena/document_indexer.py --search "hexagonal architecture" --max-results 5

Step 2: Read Specific Section Only

After finding relevant section from search:

# Use section coordinates from search result
# Example: project-basecamp-server/docs/PATTERNS.md#module-placement-rules
# Read only that section (lines 45-80) instead of entire file
Read(file_path="project-basecamp-server/docs/PATTERNS.md", offset=45, limit=35)

Step 3: Alternative - Direct JSON Query

# For programmatic access in agent workflows
import json
from pathlib import Path

cache_path = Path(".serena/cache/documents/document_index.json")
index = json.loads(cache_path.read_text())

# Search by tag
architecture_docs = index['tag_index'].get('architecture', [])

# Search by project
server_docs = index['project_index'].get('project-basecamp-server', [])

# Get section content
for ref in architecture_docs[:3]:
    print(f"Section: {ref['section_title']}")
    print(f"File: {ref['relative_path']}")
    print(f"Lines: {ref['line_start']}-{ref['line_end']}")

Decision Tree

Need documentation?
|
+-- What patterns exist for X?
|   +-- doc-search: tag_index["patterns"] or tag_index["architecture"]
|
+-- How to implement feature in project Y?
|   +-- doc-search: project_index["project-Y"] + tag_index["implementation"]
|
+-- What does README say about Z?
|   +-- doc-search: title_index["Z"] or content_index["keyword"]
|
+-- Full context needed?
    +-- Read specific section (lines from search result)
    +-- LAST RESORT: Read full file

Integration with mcp-efficiency

Document search is the first step before Serena symbol queries:

# 1. Search docs for patterns/context
doc_search("hexagonal architecture", max_results=3)

# 2. Use Serena for code structure
serena.get_symbols_overview("module-core-domain/")

# 3. Find specific symbols
serena.find_symbol("RepositoryJpa", depth=1)

Common Search Queries

Need Search Query
Architecture patterns "hexagonal" OR "architecture"
API endpoints "api" OR "endpoint" OR "controller"
Testing patterns "test" OR "testing" OR "fixture"
Entity relationships "entity" OR "repository" OR "jpa"
CLI commands "command" OR "cli" OR "dli"
Configuration "config" OR "environment" OR "settings"

Token Savings Examples

Task Without Doc Search With Doc Search Savings
Find architecture pattern 5000 tokens (full PATTERNS.md) 300 tokens 94%
Check entity rules 3000 tokens (full README) 400 tokens 87%
Find API reference 4000 tokens (full docs) 250 tokens 94%
Implementation guide 6000 tokens (multiple files) 500 tokens 92%

Updating the Index

# Rebuild after documentation changes
python3 scripts/serena/update-symbols.py --with-docs

# Incremental update (changed files only)
python3 scripts/serena/update-symbols.py --changed-only --with-docs

# Full rebuild
python3 scripts/serena/document_indexer.py --project-root . --rebuild

Anti-Patterns

Anti-Pattern Problem Solution
Read full README.md first 3000+ tokens wasted Search index, read section
Read all docs/*.md 10000+ tokens wasted Search by tag/title
Skip doc search, use web Slower, less relevant Use indexed local docs
Guess file locations Miss relevant docs Use project_index filter

Quick Reference

# CLI search (recommended)
python3 scripts/serena/document_indexer.py --search "QUERY" --max-results 5

# Build/rebuild index
python3 scripts/serena/update-symbols.py --with-docs

# Check index stats
python3 -c "import json; d=json.load(open('.serena/cache/documents/document_index.json')); print(d['metadata'])"