| name | database-optimization |
| description | SQL query optimization and database performance specialist. Use when optimizing slow queries, fixing N+1 problems, designing indexes, implementing caching, or improving database performance. Works with PostgreSQL, MySQL, and other databases. |
| author | Joseph OBrien |
| status | unpublished |
| updated | 2025-12-23 |
| version | 1.0.1 |
| tag | skill |
| type | skill |
Database Optimization
This skill optimizes database performance including query optimization, indexing strategies, N+1 problem resolution, and caching implementation.
When to Use This Skill
- When optimizing slow database queries
- When fixing N+1 query problems
- When designing indexes
- When implementing caching strategies
- When optimizing database migrations
- When improving database performance
What This Skill Does
- Query Optimization: Analyzes and optimizes SQL queries
- Index Design: Creates appropriate indexes
- N+1 Resolution: Fixes N+1 query problems
- Caching: Implements caching layers (Redis, Memcached)
- Migration Optimization: Optimizes database migrations
- Performance Monitoring: Sets up query performance monitoring
How to Use
Optimize Queries
Optimize this slow database query
Fix the N+1 query problem in this code
Specific Analysis
Analyze query performance and suggest indexes
Optimization Areas
Query Optimization
Techniques:
- Use EXPLAIN ANALYZE
- Optimize JOINs
- Reduce data scanned
- Use appropriate indexes
- Avoid SELECT *
Index Design
Strategies:
- Index frequently queried columns
- Composite indexes for multi-column queries
- Avoid over-indexing
- Monitor index usage
- Remove unused indexes
N+1 Problem
Pattern:
# Bad: N+1 queries
users = User.all()
for user in users:
posts = Post.where(user_id=user.id) # N queries
# Good: Single query with JOIN
users = User.all().includes(:posts) # 1 query
Examples
Example 1: Query Optimization
Input: Optimize slow user query
Output:
## Database Optimization: User Query
### Current Query
```sql
SELECT * FROM users
WHERE email = 'user@example.com';
-- Execution time: 450ms
Analysis
- Full table scan (no index on email)
- Scanning 1M+ rows
Optimization
-- Add index
CREATE INDEX idx_users_email ON users(email);
-- Optimized query
SELECT id, email, name FROM users
WHERE email = 'user@example.com';
-- Execution time: 2ms
Impact
- Query time: 450ms → 2ms (99.5% improvement)
- Index size: ~50MB
## Best Practices
### Database Optimization
1. **Measure First**: Use EXPLAIN ANALYZE
2. **Index Strategically**: Not every column needs an index
3. **Monitor**: Track slow query logs
4. **Cache**: Cache expensive queries
5. **Denormalize**: When justified by read patterns
## Reference Files
- **`references/query_patterns.md`** - Common query optimization patterns, anti-patterns, and caching strategies
## Related Use Cases
- Query optimization
- Index design
- N+1 problem resolution
- Caching implementation
- Database performance improvement