| name | file-converter |
| description | This skill handles file format conversions across documents (PDF, DOCX, Markdown, HTML, TXT), data files (JSON, CSV, YAML, XML, TOML), and images (PNG, JPG, WebP, SVG, GIF). Use when the user requests converting, transforming, or exporting files between formats. Generates conversion code dynamically based on the specific request. |
| author | Joseph OBrien |
| status | unpublished |
| updated | 2025-12-23 |
| version | 1.0.1 |
| tag | skill |
| type | skill |
File Converter
Overview
Convert files between formats across three categories: documents, data files, and images. Generate Python code dynamically for each conversion request, selecting appropriate libraries and handling edge cases.
Conversion Categories
Documents
| From |
To |
Recommended Library |
| Markdown |
HTML |
markdown or mistune |
| HTML |
Markdown |
markdownify or html2text |
| HTML |
PDF |
weasyprint or pdfkit (requires wkhtmltopdf) |
| PDF |
Text |
pypdf or pdfplumber |
| DOCX |
Markdown |
mammoth |
| DOCX |
PDF |
docx2pdf (Windows/macOS) or LibreOffice CLI |
| Markdown |
PDF |
Convert via HTML first, then to PDF |
Data Files
| From |
To |
Recommended Library |
| JSON |
YAML |
pyyaml |
| YAML |
JSON |
pyyaml |
| JSON |
CSV |
pandas or stdlib csv + json |
| CSV |
JSON |
pandas or stdlib csv + json |
| JSON |
TOML |
tomli/tomllib (read) + tomli-w (write) |
| XML |
JSON |
xmltodict |
| JSON |
XML |
dicttoxml or xmltodict.unparse |
Images
| From |
To |
Recommended Library |
| PNG/JPG/WebP/GIF |
Any raster |
Pillow (PIL) |
| SVG |
PNG/JPG |
cairosvg or svglib + reportlab |
| PNG |
SVG |
potrace (CLI) for tracing, limited fidelity |
Workflow
- Identify source format (from file extension or user statement)
- Identify target format
- Check
references/ for format-specific guidance
- Generate conversion code using recommended library
- Handle edge cases (encoding, transparency, nested structures)
- Execute conversion and report results
Quick Patterns
Data: JSON to YAML
import json
import yaml
with open("input.json") as f:
data = json.load(f)
with open("output.yaml", "w") as f:
yaml.dump(data, f, default_flow_style=False, allow_unicode=True)
Data: CSV to JSON
import csv
import json
with open("input.csv") as f:
reader = csv.DictReader(f)
data = list(reader)
with open("output.json", "w") as f:
json.dump(data, f, indent=2)
Document: Markdown to HTML
import markdown
with open("input.md") as f:
md_content = f.read()
html = markdown.markdown(md_content, extensions=["tables", "fenced_code"])
with open("output.html", "w") as f:
f.write(html)
Image: PNG to WebP
from PIL import Image
img = Image.open("input.png")
img.save("output.webp", "WEBP", quality=85)
Image: SVG to PNG
import cairosvg
cairosvg.svg2png(url="input.svg", write_to="output.png", scale=2)
Resources
Detailed guidance for complex conversions is in references/:
references/document-conversions.md - PDF handling, encoding issues, styling preservation
references/data-conversions.md - Schema handling, type coercion, nested structures
references/image-conversions.md - Quality settings, transparency, color profiles
Consult these references when handling edge cases or when the user has specific quality/fidelity requirements.