Claude Code Plugins

Community-maintained marketplace

Feedback

chatkit-botbuilder

@92Bilal26/TaskPilotAI
0
0

Guide for creating production-grade ChatKit chatbots that integrate OpenAI Agents SDK with MCP tools and custom backends. Use when building AI-powered chatbots with specialized capabilities, real-time task execution, and user isolation for any application.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name chatkit-botbuilder
description Guide for creating production-grade ChatKit chatbots that integrate OpenAI Agents SDK with MCP tools and custom backends. Use when building AI-powered chatbots with specialized capabilities, real-time task execution, and user isolation for any application.
license Complete terms in LICENSE.txt

ChatKit Botbuilder

Overview

Create production-grade chatbots using the OpenAI ChatKit framework. This skill enables building chatbots that:

  • Integrate AI Agents: Use OpenAI Agents SDK for intelligent conversation handling
  • Execute Tools: Connect MCP (Model Context Protocol) tools for real-world task execution
  • Support Custom Backends: Build FastAPI backends with full protocol support
  • Ensure User Isolation: Implement multi-user systems with JWT authentication
  • Real-Time Synchronization: Enable live UI updates when chatbot performs actions
  • Flexible Deployment: Deploy to web, mobile, or desktop applications

This skill provides the complete architecture pattern for ChatKit integration, from frontend configuration to backend server implementation.


When to Use This Skill

Use this skill when you need to:

  1. Build a task management chatbot - Create conversational interfaces for task creation, updates, completion
  2. Integrate AI into existing apps - Add ChatKit to dashboards, web apps, or platforms
  3. Create specialized AI assistants - Build domain-specific chatbots with custom tool integrations
  4. Implement multi-user chatbots - Create systems where each user has isolated conversations and data
  5. Add real-time capabilities - Build chatbots that trigger actual application changes
  6. Deploy AI conversations - Create chatbots that interact with your database and APIs

Architecture Overview

High-Level Flow

User Message
    ↓
ChatKit Frontend (React/Next.js)
    ↓ [JWT Token in Authorization Header]
    ↓
FastAPI Backend (ChatKit Server)
    ↓ [Extract user_id from JWT]
    ↓
OpenAI Agent (Agents SDK)
    ↓ [Needs tool execution]
    ↓
MCP Tools (Custom Tool Functions)
    ↓ [Creates/Updates/Lists data]
    ↓
Database (User-Isolated Data)
    ↓
Response → ChatKit → Frontend → User

Key Components

  1. Frontend (Next.js + ChatKit SDK)

    • ChatKit UI component with conversation history
    • JWT token management in localStorage
    • Custom fetch wrapper with Bearer token authentication
    • Real-time auto-refresh to sync with backend changes
  2. Backend (FastAPI + ChatKit Server)

    • ChatKit protocol endpoint handling requests
    • MyChatKitServer class extending ChatKitServer
    • User isolation through JWT middleware
    • Tool wrapper functions for automatic user_id injection
  3. Agent (OpenAI Agents SDK)

    • Task management agent with instructions
    • Tool registration and execution
    • Session management
  4. Tools (MCP + Custom Functions)

    • Wrapped functions injecting user_id automatically
    • Database operations with user isolation
    • Consistent error handling
  5. Database

    • SQLModel ORM models
    • Per-user task filtering
    • Conversation persistence

Quick Start Workflow

Phase 1: Backend Setup (FastAPI)

1. Create ChatKit Server Class

from chatkit.server import ChatKitServer
from chatkit.store import Store

class MyChatKitServer(ChatKitServer):
    def __init__(self):
        store = CustomChatKitStore()
        super().__init__(store=store)

    async def respond(self, thread, input, context):
        """Process user message and stream AI response"""
        user_id = getattr(context, 'user_id', None)
        # Create agent with wrapped tools
        # Stream response using official pattern

2. Create MCP Tool Wrappers

# Extract user_id from context and inject into tool calls
def add_task_wrapper(title: str, description: str = None):
    return mcp_add_task(user_id=user_id, title=title, description=description)

def list_tasks_wrapper(status: str = "all"):
    return mcp_list_tasks(user_id=user_id, status=status)

3. Create FastAPI Endpoint

@router.post("/api/v1/chatkit")
async def chatkit_protocol_endpoint(request: Request):
    user_id = request.state.user_id  # From JWT middleware
    context = create_context_object(user_id=user_id)
    result = await chatkit_server.process(body, context)
    return StreamingResponse(result, media_type="text/event-stream")

4. Configure JWT Middleware

class JWTAuthMiddleware(BaseHTTPMiddleware):
    async def dispatch(self, request, call_next):
        # Extract JWT token from Authorization header
        # Decode and set request.state.user_id
        # All endpoints have access to authenticated user_id

Phase 2: Frontend Setup (Next.js + React)

1. Configure ChatKit SDK

const chatKitConfig: UseChatKitOptions = {
  api: {
    url: `${API_BASE_URL}/api/v1/chatkit`,
    domainKey: 'your-domain-key',
    fetch: authenticatedFetch, // Custom fetch with JWT
  },
  theme: 'light',
  header: { enabled: true, title: { text: 'AI Chat' } },
  history: { enabled: true },
}

2. Create Authenticated Fetch Wrapper

async function authenticatedFetch(input, options) {
  const token = localStorage.getItem('access_token')
  const headers = {
    ...options?.headers,
    'Authorization': `Bearer ${token}`,
  }
  return fetch(input, { ...options, headers })
}

3. Integrate ChatKit Widget

import { ChatKitWidget } from '@openai/chatkit-react'

export default function Dashboard() {
  return (
    <div className="flex gap-4">
      {/* Your app content */}
      {showChat && (
        <ChatKitWidget {...chatKitConfig} />
      )}
    </div>
  )
}

4. Add Auto-Refresh for Real-Time Sync

useEffect(() => {
  if (!showChatKit) return

  // Refresh immediately when chat opens
  fetchTasks()

  // Refresh every 1 second for real-time updates
  const interval = setInterval(() => {
    fetchTasks()
  }, 1000)

  return () => clearInterval(interval)
}, [showChatKit])

Phase 3: Tool Implementation (MCP)

1. Create MCP Tools with User Isolation

def add_task(user_id: str, title: str, description: Optional[str] = None):
    """Create task - receives user_id from wrapper"""
    task = Task(
        id=str(uuid.uuid4()),
        user_id=user_id,  # Critical: ensure user isolation
        title=title,
        description=description,
        completed=False,
        created_at=datetime.utcnow(),
    )
    with Session(engine) as session:
        session.add(task)
        session.commit()

2. Register MCP Tools

mcp_server = MCPServer()
mcp_server.register_tool("add_task", add_task)
mcp_server.register_tool("list_tasks", list_tasks)
mcp_server.register_tool("delete_task", delete_task)
# ... more tools

Core Patterns & Best Practices

1. User Isolation Strategy

Three-Level Guarantee:

  1. Middleware Level - JWT validation ensures only authenticated users
  2. Tool Level - Wrapper functions automatically inject user_id
  3. Database Level - All queries filtered by user_id
# Middleware extracts user_id from token
request.state.user_id = payload.get("user_id")

# Tool wrapper captures and injects it
def add_task_wrapper(title):
    return mcp_add_task(user_id=user_id, ...)

# Database enforces it
WHERE user_id = ? AND task_id = ?

2. Message Flow with User Context

User sends: "Create a task called 'Buy milk'"
    ↓
ChatKit Protocol: POST /api/v1/chatkit
    Header: Authorization: Bearer <JWT>
    Body: { "type": "message", "text": "Create..." }
    ↓
JWT Middleware:
    Extracts user_id from token → request.state.user_id
    ↓
ChatKit Server (MyChatKitServer.respond):
    Gets user_id from context
    Creates wrapper functions capturing user_id
    Passes wrappers to Agent
    ↓
OpenAI Agent:
    Receives message: "Create a task..."
    Selects tool: add_task_wrapper
    Calls: add_task_wrapper(title="Buy milk")
    ↓
Wrapper Function:
    Calls: mcp_add_task(user_id="user-123", title="Buy milk")
    ↓
MCP Tool:
    Creates task with correct user_id
    Returns: {"task_id": "...", "title": "Buy milk"}
    ↓
Agent Response:
    "I've created 'Buy milk' task ✓"
    ↓
ChatKit Frontend:
    Displays response
    Auto-refreshes task list → Sees new task

3. Streaming Response Pattern

# Official ChatKit pattern using Runner.run_streamed
result = Runner.run_streamed(
    task_agent.agent,
    agent_input,
    context=agent_context,
)

# Stream events using official stream_agent_response
async for event in stream_agent_response(agent_context, result):
    yield event

4. Thread and Item Management

# Add user message to thread
await self.store.add_thread_item(thread.id, input, context)

# Load conversation history
items_page = await self.store.load_thread_items(
    thread.id,
    after=None,
    limit=30,
    order="desc",
    context=context,
)

# Convert to agent input
agent_input = await simple_to_agent_input(items)

Integration Patterns

Pattern 1: Task Management Chatbot (Basic)

What it does:

  • Users create tasks by talking to ChatKit
  • ChatKit shows task list in sidebar
  • Auto-refresh keeps task list in sync

Files to reference:

Pattern 2: Multi-App ChatKit Deployment

What it does:

  • Deploy ChatKit to multiple applications
  • Share the same backend and database
  • Each app has isolated user contexts

Key setup:

  • Use environment variables for API_BASE_URL
  • Configure domain key per application
  • Implement per-app authentication

Pattern 3: Real-Time Collaboration

What it does:

  • Multiple users chat with the same chatbot instance
  • Auto-refresh keeps everyone's data in sync
  • User isolation prevents cross-user data leaks

Implementation:

  • WebSocket connections for true real-time (optional advanced)
  • Polling with auto-refresh for simplicity
  • Database transactions for data consistency

Common Issues & Solutions

Issue 1: Tasks Created in ChatKit Don't Appear in Dashboard

Root Cause: user_id not passed to MCP tools

Solution: Use wrapper functions that capture and inject user_id

def add_task_wrapper(title):
    return mcp_add_task(user_id=user_id, title=title)

Issue 2: One User Sees Another User's Tasks

Root Cause: Missing user_id filter in database queries

Solution: Always filter by user_id at the tool level

stmt = select(Task).where(
    Task.user_id == user_id,
    Task.completed == False
)

Issue 3: ChatKit API Endpoint Not Found

Root Cause: Router not included in FastAPI app

Solution: Include router in main.py

from routes import chatkit
app.include_router(chatkit.router)

Issue 4: Chat Widget Not Showing Messages

Root Cause: Custom fetch not adding JWT token

Solution: Ensure authenticatedFetch adds Bearer token

const token = localStorage.getItem('access_token')
headers['Authorization'] = `Bearer ${token}`

Advanced Topics

Real-Time Updates (WebSocket)

For true real-time (not polling):

  • Implement WebSocket endpoint alongside HTTP endpoint
  • Broadcast updates to all connected clients
  • Maintain connection state with user context

Custom Tool Schemas

Structure tool responses for ChatKit widgets:

return {
    "tasks": task_list,
    "total": len(task_list),
    "pending": pending_count,
    "message": "You have 5 tasks",
    "widget": {
        "type": "card",
        "items": formatted_items,
    }
}

Session Persistence

Store conversation history in database:

  • Link conversations to users
  • Retrieve chat history for context
  • Allow resuming conversations

Resources

This skill includes comprehensive resources for building ChatKit chatbots:

references/

Backend Architecture: Complete FastAPI ChatKit server implementation details and patterns

Frontend Integration: Next.js ChatKit widget configuration and authentication

MCP Tools Guide: Creating wrapped tool functions with automatic user_id injection

User Isolation: Three-level user isolation strategy and verification checklist

scripts/

chatkit_server_template.py - FastAPI ChatKit server boilerplate with all required methods

mcp_wrapper_generator.py - Script to auto-generate MCP tool wrappers

frontend_config_generator.ts - TypeScript config generator for ChatKit frontend setup

assets/

chatkit-nextjs-template/ - Complete Next.js project with ChatKit integrated

fastapi-backend-template/ - Complete FastAPI backend with ChatKit server implementation


Verification Checklist

When building a ChatKit chatbot, verify:

  • JWT middleware extracts user_id from token
  • ChatKit endpoint receives user_id in context
  • Tool wrappers capture and inject user_id
  • Database queries filter by user_id
  • Frontend authenticatedFetch includes Bearer token
  • ChatKit configuration points to correct backend endpoint
  • Auto-refresh periodically fetches updated data
  • One user cannot see another user's data
  • Chatbot can successfully call MCP tools
  • Tool responses appear in ChatKit conversation
  • Real-time sync works between chatbot and dashboard

Next Steps

  1. For a new project: Copy the template from assets/fastapi-backend-template/ and assets/chatkit-nextjs-template/
  2. For existing app: Follow the "Integration Patterns" section and reference the architecture guides
  3. For advanced features: Read the "Advanced Topics" section and extend as needed
  4. For troubleshooting: Check "Common Issues & Solutions" and verify the checklist