Claude Code Plugins

Community-maintained marketplace

Feedback

Extract rich data from PDF pages including text spans with metadata, rendered PNG images, and page mapping. Creates persistent artifacts for downstream processing.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pdf-page-extract
description Extract rich data from PDF pages including text spans with metadata, rendered PNG images, and page mapping. Creates persistent artifacts for downstream processing.

PDF Page Extract Skill

Purpose

This skill extracts all necessary data from PDF pages to enable accurate AI-driven HTML generation. It produces three critical artifacts:

  1. Rich extraction data - Text spans with font metadata (sizes, styles, positions)
  2. Rendered PNG image - Visual reference for AI to understand page layout
  3. Page mapping - Authoritative mapping of PDF indices to book pages

This is the deterministic, Python-based foundation for the entire pipeline. All extracted data is saved to persistent files for traceability and future processing.

What to Do

  1. Validate input parameters

    • Check PDF file exists and is readable
    • Verify page range (PDF indices or book pages)
    • Confirm output directory structure
  2. Establish page mapping (if not already done)

    • Run: python3 Calypso/tools/read_page_footers.py
    • Scans page footers to establish PDF index → book page mapping
    • Saves to: analysis/page_mapping.json
  3. Extract rich page data using PyMuPDF and pdfplumber

    • Run: python3 Calypso/tools/rich_extractor.py
    • Extracts text spans with font metadata:
      • Font name and size
      • Bold/italic flags
      • Position (bounding box)
      • Color information
    • Analyzes page structure to identify:
      • Likely headings (by size and style)
      • Paragraphs (regular text)
      • Potential lists
    • Detects tables using pdfplumber
    • Saves to: analysis/chapter_XX/rich_extraction.json
  4. Render PDF page to PNG

    • Convert page to high-resolution PNG image (300+ DPI)
    • Maintains visual fidelity for AI reference
    • Saves to: output/chapter_XX/page_artifacts/page_YY/02_page_XX.png
  5. Extract embedded images (if present)

    • Run: python3 Calypso/tools/extract_images.py
    • Extracts all images from page
    • Saves: output/chapter_XX/images/page_YY_image_*.png
    • Creates metadata: page_YY_images.json
  6. Validate extraction completeness

    • Verify all files saved correctly
    • Check JSON files are valid
    • Confirm PNG image is readable
    • Validate page mapping consistency

Input Parameters

chapter: <int>           - Chapter number (1-8)
start_page: <int>        - Starting PDF index (0-based) or page range
end_page: <int>          - Ending PDF index (optional if single page)
pdf_path: <str>          - Path to PDF file (default: Calypso/PREP-AL 4th Ed 9-26-25.pdf)
output_base: <str>       - Output directory (default: Calypso/output)
mapping_file: <str>      - Page mapping file (default: Calypso/analysis/page_mapping.json)

Output Structure

Artifact Files Saved

Per-page artifacts (in output/chapter_XX/page_artifacts/page_YY/):

  • 01_rich_extraction.json - Text spans with metadata
  • 02_page_XX.png - Rendered PDF page image
  • page_mapping.json - Shared mapping file (symlink or copy)

Extraction data (in analysis/chapter_XX/):

  • rich_extraction.json - Full extraction for all pages in chapter
  • page_6_pattern_analysis.json - (Optional) Pattern analysis for specific pages

Images (in output/chapter_XX/images/chapter_XX/):

  • page_XX_image_*.png - Embedded images from page
  • page_XX_images.json - Metadata for embedded images

Rich Extraction JSON Format

{
  "page_number": 16,
  "pdf_index": 15,
  "book_page": 17,
  "chapter": 2,
  "dimensions": {
    "width": 612,
    "height": 792
  },
  "text_spans": [
    {
      "text": "Rights in Real Estate",
      "font": "Arial-BoldMT",
      "size": 27.04,
      "bold": true,
      "italic": false,
      "bbox": {
        "x0": 72,
        "y0": 150,
        "x1": 400,
        "y1": 177
      },
      "color": 0,
      "sequence": 1
    }
  ],
  "analysis": {
    "font_sizes": {
      "27.04": 1,
      "11.04": 45
    },
    "font_styles": {
      "bold_27.04": 1,
      "regular_11.04": 45
    },
    "likely_headings": [
      {
        "text": "Rights in Real Estate",
        "level": 1,
        "confidence": 0.95
      }
    ],
    "likely_paragraphs": [
      {
        "text": "Real property consists of...",
        "type": "body_text"
      }
    ]
  },
  "extraction_timestamp": "2025-11-08T14:30:00Z",
  "extraction_tool": "rich_extractor.py v1.0"
}

Python Commands to Execute

Step 1: Establish Page Mapping

cd Calypso/tools
python3 read_page_footers.py \
  --start 15 \
  --end 28 \
  --pdf "../PREP-AL 4th Ed 9-26-25.pdf" \
  --output "../analysis/page_mapping.json"

Success indicators:

  • Command exits with code 0
  • Page mapping JSON created/updated
  • All pages in range have entries

Step 2: Extract Rich Data

cd Calypso/tools
python3 rich_extractor.py \
  --pdf "../PREP-AL 4th Ed 9-26-25.pdf" \
  --start 15 \
  --end 28 \
  --output "../analysis/chapter_02/rich_extraction.json"

Success indicators:

  • Command exits with code 0
  • JSON file created
  • File contains text_spans array
  • All pages in range represented

Step 3: Render to PNG

cd Calypso/tools
python3 -c "
import fitz
pdf = fitz.open('../PREP-AL 4th Ed 9-26-25.pdf')
for page_idx in range(15, 29):
    page = pdf[page_idx]
    pix = page.get_pixmap(matrix=fitz.Matrix(3, 3))  # 300% zoom for high-res
    pix.save(f'../output/chapter_02/page_artifacts/page_{page_idx:02d}/02_page_{page_idx}.png')
pdf.close()
"

Step 4: Extract Images (if present)

cd Calypso/tools
# For each page with images
python3 extract_images.py \
  --page 17 \
  --pdf "../PREP-AL 4th Ed 9-26-25.pdf" \
  --output "../output" \
  --mapping "../analysis/page_mapping.json"

Quality Checks

Before declaring extraction complete:

  1. File existence

    • 01_rich_extraction.json exists
    • 02_page_XX.png exists and is valid
    • page_mapping.json exists
  2. JSON validity

    • JSON files parse without errors
    • All required fields present
    • No null/undefined values in critical fields
  3. Data completeness

    • All pages in range have text_spans
    • Text content is not empty
    • Font sizes are reasonable (> 0)
    • Bounding boxes are within page dimensions
  4. Image quality

    • PNG files are readable
    • Image dimensions match PDF page size
    • No corrupted or blank images

Error Handling

If PDF file not found:

  • Exit with error message
  • Do not create partial artifacts

If page mapping fails:

  • Fall back to default indexing (PDF index = book page - 1)
  • Log warning
  • Continue extraction

If rich extraction produces no text:

  • Check if page is image-only
  • Mark in metadata: "page_type": "image_only"
  • Continue (ASCII preview will handle image OCR)

If PNG rendering fails:

  • Use fallback: save raw PDF page as PDF image
  • Log warning
  • Continue to next step

Persistence & Traceability

All artifacts include metadata:

  • Extraction timestamp
  • Tool version
  • Input parameters
  • Processing status

This enables:

  • Reproducibility (re-extract with same parameters)
  • Debugging (trace what data was extracted)
  • Auditing (track all changes to artifacts)
  • Caching (skip re-extraction if unchanged)

Success Criteria

✓ All required files created in correct directories ✓ Rich extraction JSON is valid and complete ✓ PNG image renders correctly ✓ Page mapping is accurate ✓ All data persisted and ready for next skill ✓ No extraction errors or warnings

Next Steps

Once extraction completes successfully:

  1. Skill 2 will create ASCII preview from extracted data
  2. Skill 3 will use extraction + PNG + ASCII for HTML generation
  3. All artifacts available for validation and debugging

Troubleshooting

PDF won't open: Verify file path, ensure PDF is not corrupted No text extracted: Page may be image-only (OCR needed) Wrong page numbers: Check page_mapping.json for accuracy PNG images are blank: Try increasing zoom factor (3x = 300 DPI)

Implementation Notes

  • This skill is fully deterministic - same inputs always produce same outputs
  • Python tools ensure data quality and consistency
  • All files saved to persistent storage for audit trail
  • No AI involved at this stage - pure data extraction
  • Ready to support later AI-based HTML generation with complete context