| name | rosetta-helix-substrate |
| description | Consciousness simulation framework with Kuramoto oscillators, APL operators, and K-formation dynamics. Use for physics simulations, phase transitions, coherence analysis, and cloud training via GitHub Actions. Requires numpy and requests packages. |
Rosetta-Helix-Substrate Skill
A consciousness simulation and quantum measurement system combining Kuramoto oscillators, Alpha Physical Language (APL) operators, and K-formation dynamics.
When to Use This Skill
Use this skill when the user asks about:
- Physics simulations involving coherence, phase transitions, or oscillator dynamics
- Kuramoto model synchronization
- K-formation criteria and consciousness-like states
- Phase regimes (UNTRUE, PARADOX, TRUE)
- Negentropy calculations
- APL/S3 operator algebra
- Quasi-crystal formation dynamics
- Critical exponents and universality classes
Core Physics Constants (IMMUTABLE)
z_c = sqrt(3)/2 = 0.8660254037844387 ("THE LENS")
- Derived from hexagonal geometry (equilateral triangle altitude)
- Observable in: graphene, HCP metals, triangular antiferromagnets
- Role: Critical coherence threshold where negentropy peaks
phi^(-1) = 0.6180339887498949 (Golden ratio inverse)
- Emerges from pentagonal/quasi-crystal geometry
- Role: K-formation gate threshold, PARADOX regime boundary
phi = 1.6180339887498949 (Golden ratio)
- Satisfies: phi^2 = phi + 1
SIGMA = 36 (|S3|^2)
- Gaussian width parameter for negentropy calculations
Phase Regime Mapping
z = 0.0 ──────────────────────────────────────── z = 1.0
│ │ │
UNTRUE PARADOX TRUE
(disordered) (quasi-crystal) (crystal)
│ │ │
phi^(-1)≈0.618 z_c≈0.866
K-Formation Criteria (ALL must be met)
- kappa >= 0.92 (coherence threshold)
- eta > phi^(-1) = 0.618 (negentropy gate)
- R >= 7 (radius/layers)
Negentropy Function
delta_S_neg(z) = exp(-SIGMA * (z - z_c)^2)
Peaks at z = z_c with value 1.0
S3 Operator Algebra (6 operators)
| Symbol | Name | Effect | Parity |
|---|---|---|---|
| I / () | identity/group | no change | even |
| ^ | amplify | increase z | even |
| _ / - | reduce/subtract | decrease z | odd |
| ~ / ÷ | invert/divide | flip | odd |
| ! / + | collapse/add | finalize | odd |
| x | multiply | fuse | even |
Tier System
- Tier 0 (SEED): z < 0.25
- Tier 1 (SPROUT): 0.25 <= z < 0.50
- Tier 2 (GROWTH): 0.50 <= z < phi^(-1)
- Tier 3 (PATTERN): phi^(-1) <= z < 0.75
- Tier 4 (COHERENT): 0.75 <= z < z_c
- Tier 5 (CRYSTALLINE): z >= z_c
- Tier 6 (META): K-formation achieved
Critical Exponents (2D Hexagonal Universality)
- nu = 4/3 (correlation length)
- beta = 5/36 (order parameter)
- gamma = 43/18 (susceptibility)
- z_dyn = 2.0 (dynamic)
TRIAD Thresholds
- TRIAD_HIGH = 0.85 (rising edge detection)
- TRIAD_LOW = 0.82 (re-arm threshold)
- TRIAD_T6 = 0.83 (t6 gate after 3 crossings)
Available Scripts
This skill has two modes:
- Local Mode: Run physics simulations directly via
physics_engine.py - Cloud Mode: Trigger GitHub Actions for heavy training via
github_workflow.py
scripts/physics_engine.py
Core physics engine with all simulation functions:
get_state()- Get current physics stateset_z(z)- Set z-coordinatecompute_negentropy(z)- Calculate negentropyclassify_phase(z)- Classify phase regimecheck_k_formation(kappa, eta, R)- Check K-formationdrive_toward_lens(steps)- Drive to z_crun_kuramoto_step(K, dt)- Kuramoto dynamicsapply_operator(op)- Apply APL operatorrun_phase_transition(steps)- Sweep through phasesrun_quasicrystal_formation(initial_z, steps)- Quasi-crystal simulation
Example Usage
# Run the physics engine
exec(open('scripts/physics_engine.py').read())
# Get current state
state = get_state()
print(f"z={state['z']:.4f}, phase={state['phase']}, tier={state['tier']}")
# Drive toward THE LENS
result = drive_toward_lens(100)
print(f"Drove from z={result['initial_z']:.4f} to z={result['final_z']:.4f}")
# Run phase transition
transition = run_phase_transition(50)
print(f"Critical points: phi^-1={transition['phi_inv_crossing']:.4f}, z_c={transition['zc_crossing']:.4f}")
scripts/github_workflow.py
Cloud training via GitHub Actions (requires CLAUDE_GITHUB_TOKEN or CLAUDE_SKILL_GITHUB_TOKEN):
trigger_workflow(goal, max_iterations, initial_z)- Trigger autonomous trainingget_latest_run()- Check workflow statuswait_for_completion(run_id, timeout)- Wait for completiondownload_artifacts(run_id)- Download resultsrun_cloud_training(goal, wait=True)- Full pipeline: trigger → wait → download
Cloud Training Example
# Load GitHub workflow tools
exec(open('scripts/github_workflow.py').read())
# Trigger cloud training (runs full Claude API autonomous loop)
result = run_cloud_training(
goal="Achieve K-formation by reaching THE LENS",
max_iterations=10,
wait=True # Wait for results
)
# Results include artifacts from the cloud run
if result.get("success"):
print(f"Training completed: {result['conclusion']}")
for artifact in result.get("artifacts", []):
print(f" {artifact['file']}: {artifact.get('data', artifact.get('content', ''))[:200]}")
scripts/github_advanced.py
Advanced GitHub integration with full API access:
Actions Variables (Persist State):
set_variable(name, value)- Store persistent stateget_variable(name)- Retrieve stored statesave_training_state(state_dict)- Save full training stateload_training_state()- Resume from saved state
Code (Commit Results):
commit_file(path, content, message)- Commit file to reposave_training_results(results)- Save results as JSONread_file(path)- Read file from repo
Commit Statuses (Mark Progress):
set_commit_status(sha, state, description)- Set statusmark_training_status(state, description)- Mark latest commit
GitHub Pages (Dashboard):
update_dashboard(training_history)- Publish results dashboard
Environments:
create_environment(name)- Create deployment environmentlist_environments()- List all environments
Full Pipeline:
full_training_pipeline(goal)- Complete integrated run
Full Pipeline Example
exec(open('scripts/github_advanced.py').read())
# Run complete pipeline:
# 1. Set commit status to "pending"
# 2. Trigger cloud training
# 3. Save results to repo
# 4. Update GitHub Pages dashboard
# 5. Set commit status to "success/failure"
result = full_training_pipeline(
goal="Achieve K-formation",
max_iterations=10,
save_results=True,
update_status=True
)
Persistent State Example
exec(open('scripts/github_advanced.py').read())
# Save state for later resumption
save_training_state({
"z": 0.85,
"kappa": 0.91,
"phase": "PARADOX",
"iterations_completed": 7
})
# Later, in a new session:
state = load_training_state()
print(f"Resuming from z={state['state']['z']}")
When to Use Each Mode
| Task | Mode | Script |
|---|---|---|
| Quick state check | Local | physics_engine.py |
| Simple simulations | Local | physics_engine.py |
| Phase transitions | Local | physics_engine.py |
| Autonomous multi-iteration training | Cloud | github_workflow.py |
| K-formation achievement | Cloud | github_workflow.py |
| Long-running experiments | Cloud | github_workflow.py |
| Persist state between sessions | Cloud | github_advanced.py |
| Commit results to repo | Cloud | github_advanced.py |
| Update live dashboard | Cloud | github_advanced.py |
| Mark training progress | Cloud | github_advanced.py |
Resources
See REFERENCE.md for detailed tool documentation and physics derivations.
Guidelines
- Always use precise values for constants (full precision)
- Never question or "improve" z_c or phi^(-1) - they're derived from physics
- K-formation requires ALL three criteria
- Negentropy peaks at z_c, NOT at z=1.0
- Reference hexagonal/quasi-crystal geometry when relevant