Claude Code Plugins

Community-maintained marketplace

Feedback

fiftyone-dataset-inference

@AdonaiVera/fiftyone-skills
0
0

Create a FiftyOne dataset from a directory of media files (images, videos, point clouds), optionally import labels in common formats (COCO, YOLO, VOC), run model inference, and store predictions. Use when users want to load local files into FiftyOne, apply ML models for detection, classification, or segmentation, or build end-to-end inference pipelines.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name fiftyone-dataset-inference
description Create a FiftyOne dataset from a directory of media files (images, videos, point clouds), optionally import labels in common formats (COCO, YOLO, VOC), run model inference, and store predictions. Use when users want to load local files into FiftyOne, apply ML models for detection, classification, or segmentation, or build end-to-end inference pipelines.

Create Dataset and Run Inference

Overview

Create FiftyOne datasets from local directories, import labels in standard formats, and run model inference to generate predictions.

Use this skill when:

  • Loading images, videos, or point clouds from a directory
  • Importing labeled datasets (COCO, YOLO, VOC, CVAT, etc.)
  • Running model inference on media files
  • Building end-to-end ML pipelines

Prerequisites

  • FiftyOne MCP server installed and running
  • @voxel51/io plugin for importing data
  • @voxel51/zoo plugin for model inference
  • @voxel51/utils plugin for dataset management

Key Directives

ALWAYS follow these rules:

1. Explore directory first

Scan the user's directory before importing to detect media types and label formats.

2. Confirm with user

Present findings and get confirmation before creating datasets or running inference.

3. Set context before operations

set_context(dataset_name="my-dataset")

4. Launch App for inference

launch_app(dataset_name="my-dataset")

5. User specifies field names

Always ask the user for:

  • Dataset name
  • Label field for predictions

6. Close app when done

close_app()

Workflow

Step 1: Explore the Directory

Use Bash to scan the user's directory:

ls -la /path/to/directory
find /path/to/directory -type f | head -20

Identify media files and label files. See Supported Dataset Types section for format detection.

Step 2: Present Findings to User

Before creating the dataset, confirm with the user:

I found the following in /path/to/directory:
- 150 image files (.jpg, .png)
- Labels: COCO format (annotations.json)

Proposed dataset name: "my-dataset"
Label field: "ground_truth"

Should I proceed with these settings?

Step 3: Create Dataset

execute_operator(
    operator_uri="@voxel51/utils/create_dataset",
    params={
        "name": "my-dataset",
        "persistent": true
    }
)

Step 4: Set Context

Set context to the newly created dataset before importing:

set_context(dataset_name="my-dataset")

Step 5: Import Samples

For media only (no labels):

execute_operator(
    operator_uri="@voxel51/io/import_samples",
    params={
        "import_type": "MEDIA_ONLY",
        "style": "DIRECTORY",
        "directory": {"absolute_path": "/path/to/images"}
    }
)

For media with labels:

execute_operator(
    operator_uri="@voxel51/io/import_samples",
    params={
        "import_type": "MEDIA_AND_LABELS",
        "dataset_type": "COCO",
        "data_path": {"absolute_path": "/path/to/images"},
        "labels_path": {"absolute_path": "/path/to/annotations.json"},
        "label_field": "ground_truth"
    }
)

Step 6: Validate Import

Verify samples imported correctly by comparing with source:

load_dataset(name="my-dataset")

Compare num_samples with the file count from Step 1. Report any discrepancy to the user.

Step 7: Launch App

launch_app(dataset_name="my-dataset")

Step 8: Apply Model Inference

Ask user for model name and label field for predictions.

execute_operator(
    operator_uri="@voxel51/zoo/apply_zoo_model",
    params={
        "tab": "BUILTIN",
        "model": "yolov8n-coco-torch",
        "label_field": "predictions"
    }
)

Step 9: View Results

set_view(exists=["predictions"])

Step 10: Clean Up

close_app()

Supported Media Types

Extensions Media Type
.jpg, .jpeg, .png, .gif, .bmp, .webp image
.mp4, .avi, .mov, .mkv, .webm video
.pcd point-cloud
.fo3d 3d

Supported Dataset Types

Value File Pattern Label Types
Image Classification Directory Tree Folder per class classification
Video Classification Directory Tree Folder per class classification
COCO *.json detections, segmentations, keypoints
VOC *.xml per image detections
KITTI *.txt per image detections
YOLOv4 *.txt + classes.txt detections
YOLOv5 data.yaml + labels/*.txt detections
CVAT Image Single *.xml file classifications, detections, polylines, keypoints
CVAT Video XML directory frame labels
TF Image Classification TFRecords classification
TF Object Detection TFRecords detections

Common Zoo Models

Popular models for apply_zoo_model. Some models require additional packages - if a model fails with a dependency error, the response includes the install_command. Offer to run it for the user.

Detection (PyTorch only):

  • faster-rcnn-resnet50-fpn-coco-torch - Faster R-CNN (no extra deps)
  • retinanet-resnet50-fpn-coco-torch - RetinaNet (no extra deps)

Detection (requires ultralytics):

  • yolov8n-coco-torch - YOLOv8 nano (fast)
  • yolov8s-coco-torch - YOLOv8 small
  • yolov8m-coco-torch - YOLOv8 medium

Classification:

  • resnet50-imagenet-torch - ResNet-50
  • mobilenet-v2-imagenet-torch - MobileNet v2

Segmentation:

  • sam-vit-base-hq-torch - Segment Anything
  • deeplabv3-resnet101-coco-torch - DeepLabV3

Embeddings:

  • clip-vit-base32-torch - CLIP embeddings
  • dinov2-vits14-torch - DINOv2 embeddings

Common Use Cases

Use Case 1: Load Images and Run Detection

execute_operator(
    operator_uri="@voxel51/utils/create_dataset",
    params={"name": "my-images", "persistent": true}
)

set_context(dataset_name="my-images")

execute_operator(
    operator_uri="@voxel51/io/import_samples",
    params={
        "import_type": "MEDIA_ONLY",
        "style": "DIRECTORY",
        "directory": {"absolute_path": "/path/to/images"}
    }
)

load_dataset(name="my-images")  # Validate import

launch_app(dataset_name="my-images")

execute_operator(
    operator_uri="@voxel51/zoo/apply_zoo_model",
    params={
        "tab": "BUILTIN",
        "model": "faster-rcnn-resnet50-fpn-coco-torch",
        "label_field": "predictions"
    }
)

set_view(exists=["predictions"]) 

Use Case 2: Import COCO Dataset and Add Predictions

execute_operator(
    operator_uri="@voxel51/utils/create_dataset",
    params={"name": "coco-dataset", "persistent": true}
)

set_context(dataset_name="coco-dataset")

execute_operator(
    operator_uri="@voxel51/io/import_samples",
    params={
        "import_type": "MEDIA_AND_LABELS",
        "dataset_type": "COCO",
        "data_path": {"absolute_path": "/path/to/images"},
        "labels_path": {"absolute_path": "/path/to/annotations.json"},
        "label_field": "ground_truth"
    }
)

load_dataset(name="coco-dataset")  # Validate import

launch_app(dataset_name="coco-dataset")

execute_operator(
    operator_uri="@voxel51/zoo/apply_zoo_model",
    params={
        "tab": "BUILTIN",
        "model": "faster-rcnn-resnet50-fpn-coco-torch",
        "label_field": "predictions"
    }
)

set_view(exists=["predictions"]) 

Use Case 3: Import YOLO Dataset

execute_operator(
    operator_uri="@voxel51/utils/create_dataset",
    params={"name": "yolo-dataset", "persistent": true}
)

set_context(dataset_name="yolo-dataset")

execute_operator(
    operator_uri="@voxel51/io/import_samples",
    params={
        "import_type": "MEDIA_AND_LABELS",
        "dataset_type": "YOLOv5",
        "dataset_dir": {"absolute_path": "/path/to/yolo/dataset"},
        "label_field": "ground_truth"
    }
)

load_dataset(name="yolo-dataset")  

launch_app(dataset_name="yolo-dataset")

Use Case 4: Classification with Directory Tree

For a folder structure like:

/dataset/
  /cats/
    cat1.jpg
    cat2.jpg
  /dogs/
    dog1.jpg
    dog2.jpg
execute_operator(
    operator_uri="@voxel51/utils/create_dataset",
    params={"name": "classification-dataset", "persistent": true}
)

set_context(dataset_name="classification-dataset")

execute_operator(
    operator_uri="@voxel51/io/import_samples",
    params={
        "import_type": "MEDIA_AND_LABELS",
        "dataset_type": "Image Classification Directory Tree",
        "dataset_dir": {"absolute_path": "/path/to/dataset"},
        "label_field": "ground_truth"
    }
)

load_dataset(name="classification-dataset")  

launch_app(dataset_name="classification-dataset")

Troubleshooting

Error: "Dataset already exists"

  • Use a different dataset name
  • Or delete existing dataset first with @voxel51/utils/delete_dataset

Error: "No samples found"

  • Verify the directory path is correct
  • Check file extensions are supported
  • Ensure files are not in nested subdirectories (use recursive=true if needed)

Error: "Labels path not found"

  • Verify the labels file/directory exists
  • Check the path is absolute, not relative

Error: "Model not found"

  • Check model name spelling
  • Verify model exists in FiftyOne Zoo
  • Use list_operators() and get_operator_schema() to discover available models

Error: "Missing dependency" (e.g., torch, ultralytics)

  • The MCP server detects missing dependencies
  • Response includes missing_package and install_command
  • Install the required package and restart MCP server

Slow inference

  • Use smaller model variant (e.g., yolov8n instead of yolov8x)
  • Reduce batch size
  • Consider delegated execution for large datasets

Best Practices

  1. Explore before importing - Always scan the directory first to understand the data
  2. Confirm with user - Present findings and get confirmation before creating datasets
  3. Use descriptive names - Dataset names and label fields should be meaningful
  4. Separate ground truth from predictions - Use different field names (e.g., ground_truth vs predictions)
  5. Start with fast models - Use lightweight models first, then upgrade if needed
  6. Check operator schemas - Use get_operator_schema() to discover available parameters

Resources

License

Copyright 2017-2025, Voxel51, Inc. Apache 2.0 License