| name | fiftyone-dataset-inference |
| description | Create a FiftyOne dataset from a directory of media files (images, videos, point clouds), optionally import labels in common formats (COCO, YOLO, VOC), run model inference, and store predictions. Use when users want to load local files into FiftyOne, apply ML models for detection, classification, or segmentation, or build end-to-end inference pipelines. |
Create Dataset and Run Inference
Overview
Create FiftyOne datasets from local directories, import labels in standard formats, and run model inference to generate predictions.
Use this skill when:
- Loading images, videos, or point clouds from a directory
- Importing labeled datasets (COCO, YOLO, VOC, CVAT, etc.)
- Running model inference on media files
- Building end-to-end ML pipelines
Prerequisites
- FiftyOne MCP server installed and running
@voxel51/ioplugin for importing data@voxel51/zooplugin for model inference@voxel51/utilsplugin for dataset management
Key Directives
ALWAYS follow these rules:
1. Explore directory first
Scan the user's directory before importing to detect media types and label formats.
2. Confirm with user
Present findings and get confirmation before creating datasets or running inference.
3. Set context before operations
set_context(dataset_name="my-dataset")
4. Launch App for inference
launch_app(dataset_name="my-dataset")
5. User specifies field names
Always ask the user for:
- Dataset name
- Label field for predictions
6. Close app when done
close_app()
Workflow
Step 1: Explore the Directory
Use Bash to scan the user's directory:
ls -la /path/to/directory
find /path/to/directory -type f | head -20
Identify media files and label files. See Supported Dataset Types section for format detection.
Step 2: Present Findings to User
Before creating the dataset, confirm with the user:
I found the following in /path/to/directory:
- 150 image files (.jpg, .png)
- Labels: COCO format (annotations.json)
Proposed dataset name: "my-dataset"
Label field: "ground_truth"
Should I proceed with these settings?
Step 3: Create Dataset
execute_operator(
operator_uri="@voxel51/utils/create_dataset",
params={
"name": "my-dataset",
"persistent": true
}
)
Step 4: Set Context
Set context to the newly created dataset before importing:
set_context(dataset_name="my-dataset")
Step 5: Import Samples
For media only (no labels):
execute_operator(
operator_uri="@voxel51/io/import_samples",
params={
"import_type": "MEDIA_ONLY",
"style": "DIRECTORY",
"directory": {"absolute_path": "/path/to/images"}
}
)
For media with labels:
execute_operator(
operator_uri="@voxel51/io/import_samples",
params={
"import_type": "MEDIA_AND_LABELS",
"dataset_type": "COCO",
"data_path": {"absolute_path": "/path/to/images"},
"labels_path": {"absolute_path": "/path/to/annotations.json"},
"label_field": "ground_truth"
}
)
Step 6: Validate Import
Verify samples imported correctly by comparing with source:
load_dataset(name="my-dataset")
Compare num_samples with the file count from Step 1. Report any discrepancy to the user.
Step 7: Launch App
launch_app(dataset_name="my-dataset")
Step 8: Apply Model Inference
Ask user for model name and label field for predictions.
execute_operator(
operator_uri="@voxel51/zoo/apply_zoo_model",
params={
"tab": "BUILTIN",
"model": "yolov8n-coco-torch",
"label_field": "predictions"
}
)
Step 9: View Results
set_view(exists=["predictions"])
Step 10: Clean Up
close_app()
Supported Media Types
| Extensions | Media Type |
|---|---|
.jpg, .jpeg, .png, .gif, .bmp, .webp |
image |
.mp4, .avi, .mov, .mkv, .webm |
video |
.pcd |
point-cloud |
.fo3d |
3d |
Supported Dataset Types
| Value | File Pattern | Label Types |
|---|---|---|
Image Classification Directory Tree |
Folder per class | classification |
Video Classification Directory Tree |
Folder per class | classification |
COCO |
*.json |
detections, segmentations, keypoints |
VOC |
*.xml per image |
detections |
KITTI |
*.txt per image |
detections |
YOLOv4 |
*.txt + classes.txt |
detections |
YOLOv5 |
data.yaml + labels/*.txt |
detections |
CVAT Image |
Single *.xml file |
classifications, detections, polylines, keypoints |
CVAT Video |
XML directory | frame labels |
TF Image Classification |
TFRecords | classification |
TF Object Detection |
TFRecords | detections |
Common Zoo Models
Popular models for apply_zoo_model. Some models require additional packages - if a model fails with a dependency error, the response includes the install_command. Offer to run it for the user.
Detection (PyTorch only):
faster-rcnn-resnet50-fpn-coco-torch- Faster R-CNN (no extra deps)retinanet-resnet50-fpn-coco-torch- RetinaNet (no extra deps)
Detection (requires ultralytics):
yolov8n-coco-torch- YOLOv8 nano (fast)yolov8s-coco-torch- YOLOv8 smallyolov8m-coco-torch- YOLOv8 medium
Classification:
resnet50-imagenet-torch- ResNet-50mobilenet-v2-imagenet-torch- MobileNet v2
Segmentation:
sam-vit-base-hq-torch- Segment Anythingdeeplabv3-resnet101-coco-torch- DeepLabV3
Embeddings:
clip-vit-base32-torch- CLIP embeddingsdinov2-vits14-torch- DINOv2 embeddings
Common Use Cases
Use Case 1: Load Images and Run Detection
execute_operator(
operator_uri="@voxel51/utils/create_dataset",
params={"name": "my-images", "persistent": true}
)
set_context(dataset_name="my-images")
execute_operator(
operator_uri="@voxel51/io/import_samples",
params={
"import_type": "MEDIA_ONLY",
"style": "DIRECTORY",
"directory": {"absolute_path": "/path/to/images"}
}
)
load_dataset(name="my-images") # Validate import
launch_app(dataset_name="my-images")
execute_operator(
operator_uri="@voxel51/zoo/apply_zoo_model",
params={
"tab": "BUILTIN",
"model": "faster-rcnn-resnet50-fpn-coco-torch",
"label_field": "predictions"
}
)
set_view(exists=["predictions"])
Use Case 2: Import COCO Dataset and Add Predictions
execute_operator(
operator_uri="@voxel51/utils/create_dataset",
params={"name": "coco-dataset", "persistent": true}
)
set_context(dataset_name="coco-dataset")
execute_operator(
operator_uri="@voxel51/io/import_samples",
params={
"import_type": "MEDIA_AND_LABELS",
"dataset_type": "COCO",
"data_path": {"absolute_path": "/path/to/images"},
"labels_path": {"absolute_path": "/path/to/annotations.json"},
"label_field": "ground_truth"
}
)
load_dataset(name="coco-dataset") # Validate import
launch_app(dataset_name="coco-dataset")
execute_operator(
operator_uri="@voxel51/zoo/apply_zoo_model",
params={
"tab": "BUILTIN",
"model": "faster-rcnn-resnet50-fpn-coco-torch",
"label_field": "predictions"
}
)
set_view(exists=["predictions"])
Use Case 3: Import YOLO Dataset
execute_operator(
operator_uri="@voxel51/utils/create_dataset",
params={"name": "yolo-dataset", "persistent": true}
)
set_context(dataset_name="yolo-dataset")
execute_operator(
operator_uri="@voxel51/io/import_samples",
params={
"import_type": "MEDIA_AND_LABELS",
"dataset_type": "YOLOv5",
"dataset_dir": {"absolute_path": "/path/to/yolo/dataset"},
"label_field": "ground_truth"
}
)
load_dataset(name="yolo-dataset")
launch_app(dataset_name="yolo-dataset")
Use Case 4: Classification with Directory Tree
For a folder structure like:
/dataset/
/cats/
cat1.jpg
cat2.jpg
/dogs/
dog1.jpg
dog2.jpg
execute_operator(
operator_uri="@voxel51/utils/create_dataset",
params={"name": "classification-dataset", "persistent": true}
)
set_context(dataset_name="classification-dataset")
execute_operator(
operator_uri="@voxel51/io/import_samples",
params={
"import_type": "MEDIA_AND_LABELS",
"dataset_type": "Image Classification Directory Tree",
"dataset_dir": {"absolute_path": "/path/to/dataset"},
"label_field": "ground_truth"
}
)
load_dataset(name="classification-dataset")
launch_app(dataset_name="classification-dataset")
Troubleshooting
Error: "Dataset already exists"
- Use a different dataset name
- Or delete existing dataset first with
@voxel51/utils/delete_dataset
Error: "No samples found"
- Verify the directory path is correct
- Check file extensions are supported
- Ensure files are not in nested subdirectories (use
recursive=trueif needed)
Error: "Labels path not found"
- Verify the labels file/directory exists
- Check the path is absolute, not relative
Error: "Model not found"
- Check model name spelling
- Verify model exists in FiftyOne Zoo
- Use
list_operators()andget_operator_schema()to discover available models
Error: "Missing dependency" (e.g., torch, ultralytics)
- The MCP server detects missing dependencies
- Response includes
missing_packageandinstall_command - Install the required package and restart MCP server
Slow inference
- Use smaller model variant (e.g.,
yolov8ninstead ofyolov8x) - Reduce batch size
- Consider delegated execution for large datasets
Best Practices
- Explore before importing - Always scan the directory first to understand the data
- Confirm with user - Present findings and get confirmation before creating datasets
- Use descriptive names - Dataset names and label fields should be meaningful
- Separate ground truth from predictions - Use different field names (e.g.,
ground_truthvspredictions) - Start with fast models - Use lightweight models first, then upgrade if needed
- Check operator schemas - Use
get_operator_schema()to discover available parameters
Resources
License
Copyright 2017-2025, Voxel51, Inc. Apache 2.0 License