| name | dagster-development |
| description | Expert guidance for Dagster data orchestration including assets, resources, schedules, sensors, partitions, testing, and ETL patterns. Use when building or extending Dagster projects, writing assets, configuring automation, or integrating with dbt/dlt/Sling. |
Dagster Development Expert
Quick Reference
| If you're writing... | Check this section/reference |
|---|---|
@dg.asset |
Assets or references/assets.md |
ConfigurableResource |
Resources or references/resources.md |
@dg.schedule or ScheduleDefinition |
Automation or references/automation.md |
@dg.sensor |
Sensors or references/automation.md |
PartitionsDefinition |
Partitions or references/automation.md |
Tests with dg.materialize() |
Testing or references/testing.md |
@asset_check |
references/testing.md#asset-checks |
@dlt_assets or @sling_assets |
references/etl-patterns.md |
@dbt_assets |
dbt Integration or dbt-development skill |
Definitions or code locations |
references/project-structure.md |
Core Concepts
Asset: A persistent object (table, file, model) that your pipeline produces. Define with @dg.asset.
Resource: External services/tools (databases, APIs) shared across assets. Define with ConfigurableResource.
Job: A selection of assets to execute together. Create with dg.define_asset_job().
Schedule: Time-based automation for jobs. Create with dg.ScheduleDefinition.
Sensor: Event-driven automation that watches for changes. Define with @dg.sensor.
Partition: Logical divisions of data (by date, category). Define with PartitionsDefinition.
Definitions: The container for all Dagster objects in a code location.
Assets Quick Reference
Basic Asset
import dagster as dg
@dg.asset
def my_asset() -> None:
"""Asset description appears in the UI."""
# Your computation logic here
pass
Asset with Dependencies
@dg.asset
def downstream_asset(upstream_asset) -> dict:
"""Depends on upstream_asset by naming it as a parameter."""
return {"processed": upstream_asset}
Asset with Metadata
@dg.asset(
group_name="analytics",
key_prefix=["warehouse", "staging"],
description="Cleaned customer data",
)
def customers() -> None:
pass
Naming: Use nouns describing what is produced (customers, daily_revenue), not verbs (load_customers).
Resources Quick Reference
Define a Resource
from dagster import ConfigurableResource
class DatabaseResource(ConfigurableResource):
connection_string: str
def query(self, sql: str) -> list:
# Implementation here
pass
Use in Assets
@dg.asset
def my_asset(database: DatabaseResource) -> None:
results = database.query("SELECT * FROM table")
Register in Definitions
dg.Definitions(
assets=[my_asset],
resources={"database": DatabaseResource(connection_string="...")},
)
Automation Quick Reference
Schedule
import dagster as dg
from my_project.defs.jobs import my_job
my_schedule = dg.ScheduleDefinition(
job=my_job,
cron_schedule="0 0 * * *", # Daily at midnight
)
Common Cron Patterns
| Pattern | Meaning |
|---|---|
0 * * * * |
Every hour |
0 0 * * * |
Daily at midnight |
0 0 * * 1 |
Weekly on Monday |
0 0 1 * * |
Monthly on the 1st |
0 0 5 * * |
Monthly on the 5th |
Sensors Quick Reference
Basic Sensor Pattern
@dg.sensor(job=my_job)
def my_sensor(context: dg.SensorEvaluationContext):
# 1. Read cursor (previous state)
previous_state = json.loads(context.cursor) if context.cursor else {}
current_state = {}
runs_to_request = []
# 2. Check for changes
for item in get_items_to_check():
current_state[item.id] = item.modified_at
if item.id not in previous_state or previous_state[item.id] != item.modified_at:
runs_to_request.append(dg.RunRequest(
run_key=f"run_{item.id}_{item.modified_at}",
run_config={...}
))
# 3. Return result with updated cursor
return dg.SensorResult(
run_requests=runs_to_request,
cursor=json.dumps(current_state)
)
Key: Use cursors to track state between sensor evaluations.
Partitions Quick Reference
Time-Based Partition
weekly_partition = dg.WeeklyPartitionsDefinition(start_date="2023-01-01")
@dg.asset(partitions_def=weekly_partition)
def weekly_data(context: dg.AssetExecutionContext) -> None:
partition_key = context.partition_key # e.g., "2023-01-01"
# Process data for this partition
Static Partition
region_partition = dg.StaticPartitionsDefinition(["us-east", "us-west", "eu"])
@dg.asset(partitions_def=region_partition)
def regional_data(context: dg.AssetExecutionContext) -> None:
region = context.partition_key
Partition Types
| Type | Use Case |
|---|---|
DailyPartitionsDefinition |
One partition per day |
WeeklyPartitionsDefinition |
One partition per week |
MonthlyPartitionsDefinition |
One partition per month |
StaticPartitionsDefinition |
Fixed set of partitions |
MultiPartitionsDefinition |
Combine multiple partition dimensions |
Testing Quick Reference
Direct Function Testing
def test_my_asset():
result = my_asset()
assert result == expected_value
Testing with Materialization
def test_asset_graph():
result = dg.materialize(
assets=[asset_a, asset_b],
resources={"database": mock_database},
)
assert result.success
assert result.output_for_node("asset_b") == expected
Mocking Resources
from unittest.mock import Mock
def test_with_mocked_resource():
mocked_resource = Mock()
mocked_resource.query.return_value = [{"id": 1}]
result = dg.materialize(
assets=[my_asset],
resources={"database": mocked_resource},
)
assert result.success
Asset Checks
@dg.asset_check(asset=my_asset)
def validate_non_empty(my_asset):
return dg.AssetCheckResult(
passed=len(my_asset) > 0,
metadata={"row_count": len(my_asset)},
)
dbt Integration
For dbt integration, use the minimal pattern below. For comprehensive dbt patterns, see the dbt-development skill.
Basic dbt Assets
from dagster_dbt import DbtCliResource, dbt_assets
from pathlib import Path
dbt_project_dir = Path(__file__).parent / "dbt_project"
@dbt_assets(manifest=dbt_project_dir / "target" / "manifest.json")
def my_dbt_assets(context: dg.AssetExecutionContext, dbt: DbtCliResource):
yield from dbt.cli(["build"], context=context).stream()
dbt Resource
dg.Definitions(
assets=[my_dbt_assets],
resources={"dbt": DbtCliResource(project_dir=dbt_project_dir)},
)
Full patterns: See Dagster dbt docs
When to Load References
Load references/assets.md when:
- Defining complex asset dependencies
- Adding metadata, groups, or key prefixes
- Working with asset factories
- Understanding asset materialization patterns
Load references/resources.md when:
- Creating custom
ConfigurableResourceclasses - Integrating with databases, APIs, or cloud services
- Understanding resource scoping and lifecycle
Load references/automation.md when:
- Creating schedules with complex cron patterns
- Building sensors with cursors and state management
- Implementing partitions and backfills
- Automating dbt or other integration runs
Load references/testing.md when:
- Writing unit tests for assets
- Mocking resources and dependencies
- Using
dg.materialize()for integration tests - Creating asset checks for data validation
Load references/etl-patterns.md when:
- Using dlt for embedded ETL
- Using Sling for database replication
- Loading data from files or APIs
- Integrating external ETL tools
Load references/project-structure.md when:
- Setting up a new Dagster project
- Configuring
Definitionsand code locations - Using
dgCLI for scaffolding - Organizing large projects with Components
Project Structure
Recommended Layout
my_project/
├── pyproject.toml
├── src/
│ └── my_project/
│ ├── definitions.py # Main Definitions
│ └── defs/
│ ├── assets/
│ │ ├── __init__.py
│ │ └── my_assets.py
│ ├── jobs.py
│ ├── schedules.py
│ ├── sensors.py
│ └── resources.py
└── tests/
└── test_assets.py
Definitions Pattern (Modern)
# src/my_project/definitions.py
from pathlib import Path
from dagster import definitions, load_from_defs_folder
@definitions
def defs():
return load_from_defs_folder(project_root=Path(__file__).parent.parent.parent)
Scaffolding with dg CLI
# Create new project
uvx create-dagster my_project
# Scaffold new asset file
dg scaffold defs dagster.asset assets/new_asset.py
# Scaffold schedule
dg scaffold defs dagster.schedule schedules.py
# Scaffold sensor
dg scaffold defs dagster.sensor sensors.py
# Validate definitions
dg check defs
Common Patterns
Job Definition
trip_update_job = dg.define_asset_job(
name="trip_update_job",
selection=["taxi_trips", "taxi_zones"],
)
Run Configuration
from dagster import Config
class MyAssetConfig(Config):
filename: str
limit: int = 100
@dg.asset
def configurable_asset(config: MyAssetConfig) -> None:
print(f"Processing {config.filename} with limit {config.limit}")
Asset Dependencies with External Sources
@dg.asset(deps=["external_table"])
def derived_asset() -> None:
"""Depends on external_table which isn't managed by Dagster."""
pass
Anti-Patterns to Avoid
| Anti-Pattern | Better Approach |
|---|---|
| Hardcoding credentials in assets | Use ConfigurableResource with env vars |
| Giant assets that do everything | Split into focused, composable assets |
| Ignoring asset return types | Use type annotations for clarity |
| Skipping tests for assets | Test assets like regular Python functions |
| Not using partitions for time-series | Use DailyPartitionsDefinition etc. |
| Putting all assets in one file | Organize by domain in separate modules |
CLI Quick Reference
# Development
dg dev # Start Dagster UI
dg check defs # Validate definitions
# Scaffolding
dg scaffold defs dagster.asset assets/file.py
dg scaffold defs dagster.schedule schedules.py
dg scaffold defs dagster.sensor sensors.py
# Production
dagster job execute -j my_job # Execute a job
dagster asset materialize -a my_asset # Materialize an asset
References
- Assets:
references/assets.md- Detailed asset patterns - Resources:
references/resources.md- Resource configuration - Automation:
references/automation.md- Schedules, sensors, partitions - Testing:
references/testing.md- Testing patterns and asset checks - ETL Patterns:
references/etl-patterns.md- dlt, Sling, file/API ingestion - Project Structure:
references/project-structure.md- Definitions, Components - Official Docs: https://docs.dagster.io
- API Reference: https://docs.dagster.io/api/dagster