Claude Code Plugins

Community-maintained marketplace

Feedback

Expert guidance for Dagster data orchestration including assets, resources, schedules, sensors, partitions, testing, and ETL patterns. Use when building or extending Dagster projects, writing assets, configuring automation, or integrating with dbt/dlt/Sling.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name dagster-development
description Expert guidance for Dagster data orchestration including assets, resources, schedules, sensors, partitions, testing, and ETL patterns. Use when building or extending Dagster projects, writing assets, configuring automation, or integrating with dbt/dlt/Sling.

Dagster Development Expert

Quick Reference

If you're writing... Check this section/reference
@dg.asset Assets or references/assets.md
ConfigurableResource Resources or references/resources.md
@dg.schedule or ScheduleDefinition Automation or references/automation.md
@dg.sensor Sensors or references/automation.md
PartitionsDefinition Partitions or references/automation.md
Tests with dg.materialize() Testing or references/testing.md
@asset_check references/testing.md#asset-checks
@dlt_assets or @sling_assets references/etl-patterns.md
@dbt_assets dbt Integration or dbt-development skill
Definitions or code locations references/project-structure.md

Core Concepts

Asset: A persistent object (table, file, model) that your pipeline produces. Define with @dg.asset.

Resource: External services/tools (databases, APIs) shared across assets. Define with ConfigurableResource.

Job: A selection of assets to execute together. Create with dg.define_asset_job().

Schedule: Time-based automation for jobs. Create with dg.ScheduleDefinition.

Sensor: Event-driven automation that watches for changes. Define with @dg.sensor.

Partition: Logical divisions of data (by date, category). Define with PartitionsDefinition.

Definitions: The container for all Dagster objects in a code location.


Assets Quick Reference

Basic Asset

import dagster as dg

@dg.asset
def my_asset() -> None:
    """Asset description appears in the UI."""
    # Your computation logic here
    pass

Asset with Dependencies

@dg.asset
def downstream_asset(upstream_asset) -> dict:
    """Depends on upstream_asset by naming it as a parameter."""
    return {"processed": upstream_asset}

Asset with Metadata

@dg.asset(
    group_name="analytics",
    key_prefix=["warehouse", "staging"],
    description="Cleaned customer data",
)
def customers() -> None:
    pass

Naming: Use nouns describing what is produced (customers, daily_revenue), not verbs (load_customers).


Resources Quick Reference

Define a Resource

from dagster import ConfigurableResource

class DatabaseResource(ConfigurableResource):
    connection_string: str
    
    def query(self, sql: str) -> list:
        # Implementation here
        pass

Use in Assets

@dg.asset
def my_asset(database: DatabaseResource) -> None:
    results = database.query("SELECT * FROM table")

Register in Definitions

dg.Definitions(
    assets=[my_asset],
    resources={"database": DatabaseResource(connection_string="...")},
)

Automation Quick Reference

Schedule

import dagster as dg
from my_project.defs.jobs import my_job

my_schedule = dg.ScheduleDefinition(
    job=my_job,
    cron_schedule="0 0 * * *",  # Daily at midnight
)

Common Cron Patterns

Pattern Meaning
0 * * * * Every hour
0 0 * * * Daily at midnight
0 0 * * 1 Weekly on Monday
0 0 1 * * Monthly on the 1st
0 0 5 * * Monthly on the 5th

Sensors Quick Reference

Basic Sensor Pattern

@dg.sensor(job=my_job)
def my_sensor(context: dg.SensorEvaluationContext):
    # 1. Read cursor (previous state)
    previous_state = json.loads(context.cursor) if context.cursor else {}
    current_state = {}
    runs_to_request = []
    
    # 2. Check for changes
    for item in get_items_to_check():
        current_state[item.id] = item.modified_at
        if item.id not in previous_state or previous_state[item.id] != item.modified_at:
            runs_to_request.append(dg.RunRequest(
                run_key=f"run_{item.id}_{item.modified_at}",
                run_config={...}
            ))
    
    # 3. Return result with updated cursor
    return dg.SensorResult(
        run_requests=runs_to_request,
        cursor=json.dumps(current_state)
    )

Key: Use cursors to track state between sensor evaluations.


Partitions Quick Reference

Time-Based Partition

weekly_partition = dg.WeeklyPartitionsDefinition(start_date="2023-01-01")

@dg.asset(partitions_def=weekly_partition)
def weekly_data(context: dg.AssetExecutionContext) -> None:
    partition_key = context.partition_key  # e.g., "2023-01-01"
    # Process data for this partition

Static Partition

region_partition = dg.StaticPartitionsDefinition(["us-east", "us-west", "eu"])

@dg.asset(partitions_def=region_partition)
def regional_data(context: dg.AssetExecutionContext) -> None:
    region = context.partition_key

Partition Types

Type Use Case
DailyPartitionsDefinition One partition per day
WeeklyPartitionsDefinition One partition per week
MonthlyPartitionsDefinition One partition per month
StaticPartitionsDefinition Fixed set of partitions
MultiPartitionsDefinition Combine multiple partition dimensions

Testing Quick Reference

Direct Function Testing

def test_my_asset():
    result = my_asset()
    assert result == expected_value

Testing with Materialization

def test_asset_graph():
    result = dg.materialize(
        assets=[asset_a, asset_b],
        resources={"database": mock_database},
    )
    assert result.success
    assert result.output_for_node("asset_b") == expected

Mocking Resources

from unittest.mock import Mock

def test_with_mocked_resource():
    mocked_resource = Mock()
    mocked_resource.query.return_value = [{"id": 1}]
    
    result = dg.materialize(
        assets=[my_asset],
        resources={"database": mocked_resource},
    )
    assert result.success

Asset Checks

@dg.asset_check(asset=my_asset)
def validate_non_empty(my_asset):
    return dg.AssetCheckResult(
        passed=len(my_asset) > 0,
        metadata={"row_count": len(my_asset)},
    )

dbt Integration

For dbt integration, use the minimal pattern below. For comprehensive dbt patterns, see the dbt-development skill.

Basic dbt Assets

from dagster_dbt import DbtCliResource, dbt_assets
from pathlib import Path

dbt_project_dir = Path(__file__).parent / "dbt_project"

@dbt_assets(manifest=dbt_project_dir / "target" / "manifest.json")
def my_dbt_assets(context: dg.AssetExecutionContext, dbt: DbtCliResource):
    yield from dbt.cli(["build"], context=context).stream()

dbt Resource

dg.Definitions(
    assets=[my_dbt_assets],
    resources={"dbt": DbtCliResource(project_dir=dbt_project_dir)},
)

Full patterns: See Dagster dbt docs


When to Load References

Load references/assets.md when:

  • Defining complex asset dependencies
  • Adding metadata, groups, or key prefixes
  • Working with asset factories
  • Understanding asset materialization patterns

Load references/resources.md when:

  • Creating custom ConfigurableResource classes
  • Integrating with databases, APIs, or cloud services
  • Understanding resource scoping and lifecycle

Load references/automation.md when:

  • Creating schedules with complex cron patterns
  • Building sensors with cursors and state management
  • Implementing partitions and backfills
  • Automating dbt or other integration runs

Load references/testing.md when:

  • Writing unit tests for assets
  • Mocking resources and dependencies
  • Using dg.materialize() for integration tests
  • Creating asset checks for data validation

Load references/etl-patterns.md when:

  • Using dlt for embedded ETL
  • Using Sling for database replication
  • Loading data from files or APIs
  • Integrating external ETL tools

Load references/project-structure.md when:

  • Setting up a new Dagster project
  • Configuring Definitions and code locations
  • Using dg CLI for scaffolding
  • Organizing large projects with Components

Project Structure

Recommended Layout

my_project/
├── pyproject.toml
├── src/
│   └── my_project/
│       ├── definitions.py     # Main Definitions
│       └── defs/
│           ├── assets/
│           │   ├── __init__.py
│           │   └── my_assets.py
│           ├── jobs.py
│           ├── schedules.py
│           ├── sensors.py
│           └── resources.py
└── tests/
    └── test_assets.py

Definitions Pattern (Modern)

# src/my_project/definitions.py
from pathlib import Path
from dagster import definitions, load_from_defs_folder

@definitions
def defs():
    return load_from_defs_folder(project_root=Path(__file__).parent.parent.parent)

Scaffolding with dg CLI

# Create new project
uvx create-dagster my_project

# Scaffold new asset file
dg scaffold defs dagster.asset assets/new_asset.py

# Scaffold schedule
dg scaffold defs dagster.schedule schedules.py

# Scaffold sensor
dg scaffold defs dagster.sensor sensors.py

# Validate definitions
dg check defs

Common Patterns

Job Definition

trip_update_job = dg.define_asset_job(
    name="trip_update_job",
    selection=["taxi_trips", "taxi_zones"],
)

Run Configuration

from dagster import Config

class MyAssetConfig(Config):
    filename: str
    limit: int = 100

@dg.asset
def configurable_asset(config: MyAssetConfig) -> None:
    print(f"Processing {config.filename} with limit {config.limit}")

Asset Dependencies with External Sources

@dg.asset(deps=["external_table"])
def derived_asset() -> None:
    """Depends on external_table which isn't managed by Dagster."""
    pass

Anti-Patterns to Avoid

Anti-Pattern Better Approach
Hardcoding credentials in assets Use ConfigurableResource with env vars
Giant assets that do everything Split into focused, composable assets
Ignoring asset return types Use type annotations for clarity
Skipping tests for assets Test assets like regular Python functions
Not using partitions for time-series Use DailyPartitionsDefinition etc.
Putting all assets in one file Organize by domain in separate modules

CLI Quick Reference

# Development
dg dev                          # Start Dagster UI
dg check defs                   # Validate definitions

# Scaffolding
dg scaffold defs dagster.asset assets/file.py
dg scaffold defs dagster.schedule schedules.py
dg scaffold defs dagster.sensor sensors.py

# Production
dagster job execute -j my_job   # Execute a job
dagster asset materialize -a my_asset  # Materialize an asset

References

  • Assets: references/assets.md - Detailed asset patterns
  • Resources: references/resources.md - Resource configuration
  • Automation: references/automation.md - Schedules, sensors, partitions
  • Testing: references/testing.md - Testing patterns and asset checks
  • ETL Patterns: references/etl-patterns.md - dlt, Sling, file/API ingestion
  • Project Structure: references/project-structure.md - Definitions, Components
  • Official Docs: https://docs.dagster.io
  • API Reference: https://docs.dagster.io/api/dagster