Claude Code Plugins

Community-maintained marketplace

Feedback
0
0

Pydantic v2 patterns for validation and serialization. Use when creating schemas, validating data, or working with request/response models.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name py-pydantic-patterns
description Pydantic v2 patterns for validation and serialization. Use when creating schemas, validating data, or working with request/response models.

Pydantic v2 Patterns

Problem Statement

Pydantic v2 has significant API changes from v1. This codebase uses v2. Wrong patterns cause validation failures, serialization bugs, and frontend integration issues.


Pattern: v1 to v2 Migration

Critical changes to know:

# ❌ v1 (OLD - don't use)
from pydantic import validator
class Model(BaseModel):
    class Config:
        orm_mode = True
    
    @validator("email")
    def validate_email(cls, v):
        return v.lower()
    
    def dict(self):
        ...

# ✅ v2 (CURRENT)
from pydantic import field_validator, ConfigDict
class Model(BaseModel):
    model_config = ConfigDict(from_attributes=True)
    
    @field_validator("email")
    @classmethod
    def validate_email(cls, v: str) -> str:
        return v.lower()
    
    def model_dump(self):
        ...

Quick reference:

v1 v2
class Config model_config = ConfigDict(...)
orm_mode = True from_attributes=True
.dict() .model_dump()
.json() .model_dump_json()
@validator @field_validator
@root_validator @model_validator
parse_obj() model_validate()
update_forward_refs() model_rebuild()

Pattern: Field Validators

from pydantic import BaseModel, field_validator, ValidationInfo

class AssessmentCreate(BaseModel):
    title: str
    skill_areas: list[str]
    max_score: int
    
    # Single field validator
    @field_validator("title")
    @classmethod
    def title_not_empty(cls, v: str) -> str:
        if not v.strip():
            raise ValueError("Title cannot be empty")
        return v.strip()
    
    # Validator with access to other fields
    @field_validator("max_score")
    @classmethod
    def validate_max_score(cls, v: int, info: ValidationInfo) -> int:
        if v < 1:
            raise ValueError("Max score must be positive")
        return v
    
    # Multiple fields
    @field_validator("skill_areas")
    @classmethod
    def validate_skill_areas(cls, v: list[str]) -> list[str]:
        valid = {"fundamentals", "advanced", "strategy"}
        for area in v:
            if area not in valid:
                raise ValueError(f"Invalid skill area: {area}")
        return v

Pattern: Model Validators

from pydantic import BaseModel, model_validator

class DateRange(BaseModel):
    start_date: datetime
    end_date: datetime
    
    # Before validation (raw input)
    @model_validator(mode="before")
    @classmethod
    def parse_dates(cls, data: dict) -> dict:
        # Handle string dates
        if isinstance(data.get("start_date"), str):
            data["start_date"] = datetime.fromisoformat(data["start_date"])
        return data
    
    # After validation (validated model)
    @model_validator(mode="after")
    def validate_range(self) -> "DateRange":
        if self.end_date < self.start_date:
            raise ValueError("end_date must be after start_date")
        return self

Pattern: Model Configuration

from pydantic import BaseModel, ConfigDict

class UserRead(BaseModel):
    # Configure model behavior
    model_config = ConfigDict(
        from_attributes=True,      # Allow from ORM objects
        str_strip_whitespace=True, # Strip strings
        str_min_length=1,          # No empty strings by default
        validate_default=True,     # Validate default values
        extra="forbid",            # Error on extra fields
        frozen=False,              # Allow mutation
    )
    
    id: UUID
    email: str
    created_at: datetime

# Usage with SQLModel objects
user_db = await session.get(User, user_id)
user_read = UserRead.model_validate(user_db)  # Works due to from_attributes

Pattern: Field Definitions

from pydantic import BaseModel, Field
from typing import Annotated

class AssessmentCreate(BaseModel):
    # Basic constraints
    title: str = Field(min_length=1, max_length=200)
    score: int = Field(ge=0, le=100)  # 0 <= score <= 100
    rating: float = Field(gt=0, lt=5.5)  # 0 < rating < 5.5
    
    # With description (shows in OpenAPI)
    skill_areas: list[str] = Field(
        min_length=1,
        description="List of skill areas to assess",
        examples=[["fundamentals", "strategy"]],
    )
    
    # Optional with default
    notes: str | None = Field(default=None, max_length=1000)
    
    # Computed default
    created_at: datetime = Field(default_factory=datetime.utcnow)

# Reusable type with constraints
PositiveInt = Annotated[int, Field(gt=0)]
Rating = Annotated[float, Field(ge=1.0, le=5.5)]

class Result(BaseModel):
    count: PositiveInt
    rating: Rating

Pattern: Discriminated Unions

Problem: Polymorphic responses where type depends on a field.

from pydantic import BaseModel, Field
from typing import Literal, Union
from typing_extensions import Annotated

class TextQuestion(BaseModel):
    type: Literal["text"] = "text"
    prompt: str
    max_length: int

class MultipleChoiceQuestion(BaseModel):
    type: Literal["multiple_choice"] = "multiple_choice"
    prompt: str
    options: list[str]

class RatingQuestion(BaseModel):
    type: Literal["rating"] = "rating"
    prompt: str
    min_value: int
    max_value: int

# Discriminated union - Pydantic uses 'type' field to determine class
Question = Annotated[
    Union[TextQuestion, MultipleChoiceQuestion, RatingQuestion],
    Field(discriminator="type"),
]

class Assessment(BaseModel):
    questions: list[Question]

# Pydantic automatically deserializes to correct type
data = {
    "questions": [
        {"type": "text", "prompt": "Describe...", "max_length": 500},
        {"type": "rating", "prompt": "Rate...", "min_value": 1, "max_value": 5},
    ]
}
assessment = Assessment.model_validate(data)
# assessment.questions[0] is TextQuestion
# assessment.questions[1] is RatingQuestion

Pattern: Custom Types

from pydantic import BaseModel, AfterValidator, BeforeValidator
from typing import Annotated
import re

# Email normalization
def normalize_email(v: str) -> str:
    return v.lower().strip()

Email = Annotated[str, AfterValidator(normalize_email)]

# Phone validation
def validate_phone(v: str) -> str:
    cleaned = re.sub(r"[^\d+]", "", v)
    if not re.match(r"^\+?1?\d{10,14}$", cleaned):
        raise ValueError("Invalid phone number")
    return cleaned

PhoneNumber = Annotated[str, BeforeValidator(validate_phone)]

# UUID from string
def parse_uuid(v: str | UUID) -> UUID:
    if isinstance(v, str):
        return UUID(v)
    return v

UUIDStr = Annotated[UUID, BeforeValidator(parse_uuid)]

class User(BaseModel):
    email: Email
    phone: PhoneNumber | None = None
    id: UUIDStr

Pattern: Serialization Control

from pydantic import BaseModel, field_serializer, computed_field

class User(BaseModel):
    id: UUID
    email: str
    created_at: datetime
    
    # Custom serialization
    @field_serializer("created_at")
    def serialize_datetime(self, dt: datetime) -> str:
        return dt.isoformat()
    
    @field_serializer("id")
    def serialize_uuid(self, id: UUID) -> str:
        return str(id)
    
    # Computed field (included in serialization)
    @computed_field
    @property
    def display_name(self) -> str:
        return self.email.split("@")[0]

# Serialization options
user.model_dump()                          # Full dict
user.model_dump(exclude={"created_at"})    # Exclude fields
user.model_dump(include={"id", "email"})   # Include only
user.model_dump(exclude_none=True)         # Skip None values
user.model_dump(by_alias=True)             # Use field aliases
user.model_dump_json()                     # JSON string

Pattern: Schema Inheritance

class UserBase(BaseModel):
    email: str
    name: str

class UserCreate(UserBase):
    password: str  # Only for creation

class UserRead(UserBase):
    id: UUID
    created_at: datetime
    
    model_config = ConfigDict(from_attributes=True)

class UserUpdate(BaseModel):
    # All optional for partial updates
    email: str | None = None
    name: str | None = None
    password: str | None = None

Common Issues

Issue Likely Cause Solution
"X is not a valid dict" Using .dict() (v1) Use .model_dump()
"Unable to parse ORM object" Missing from_attributes Add ConfigDict(from_attributes=True)
"@validator not recognized" v1 decorator Use @field_validator with @classmethod
"Extra fields not permitted" extra="forbid" Remove extra fields or change config
Validation not running Default value not validated Add validate_default=True

Detection Commands

# Find v1 patterns
grep -rn "class Config:" --include="*.py"
grep -rn "@validator" --include="*.py"
grep -rn "\.dict()" --include="*.py"
grep -rn "orm_mode" --include="*.py"