Claude Code Plugins

Community-maintained marketplace

Feedback

axiom-vision-diag

@CharlesWiltgen/Axiom
191
0

subject not detected, hand pose missing landmarks, low confidence observations, Vision performance, coordinate conversion, VisionKit errors, observation nil, text not recognized, barcode not detected, DataScannerViewController not working, document scan issues

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name axiom-vision-diag
description subject not detected, hand pose missing landmarks, low confidence observations, Vision performance, coordinate conversion, VisionKit errors, observation nil, text not recognized, barcode not detected, DataScannerViewController not working, document scan issues
user-invocable false
skill_type diagnostic
version 1.1.0
last_updated Sat Jan 03 2026 00:00:00 GMT+0000 (Coordinated Universal Time)
apple_platforms iOS 11+, iPadOS 11+, macOS 10.13+, tvOS 11+, axiom-visionOS 1+

Vision Framework Diagnostics

Systematic troubleshooting for Vision framework issues: subjects not detected, missing landmarks, low confidence, performance problems, coordinate mismatches, text recognition failures, barcode detection issues, and document scanning problems.

Overview

Core Principle: When Vision doesn't work, the problem is usually:

  1. Environment (lighting, occlusion, edge of frame) - 40%
  2. Confidence threshold (ignoring low confidence data) - 30%
  3. Threading (blocking main thread causes frozen UI) - 15%
  4. Coordinates (mixing lower-left and top-left origins) - 10%
  5. API availability (using iOS 17+ APIs on older devices) - 5%

Always check environment and confidence BEFORE debugging code.

Red Flags

Symptoms that indicate Vision-specific issues:

Symptom Likely Cause
Subject not detected at all Edge of frame, poor lighting, very small subject
Hand landmarks intermittently nil Hand near edge, parallel to camera, glove/occlusion
Body pose skipped frames Person bent over, upside down, flowing clothing
UI freezes during processing Running Vision on main thread
Overlays in wrong position Coordinate conversion (lower-left vs top-left)
Crash on older devices Using iOS 17+ APIs without @available check
Person segmentation misses people >4 people in scene (instance mask limit)
Low FPS in camera feed maximumHandCount too high, not dropping frames
Text not recognized at all Blurry image, stylized font, wrong recognition level
Text misread (wrong characters) Language correction disabled, missing custom words
Barcode not detected Wrong symbology, code too small, glare/reflection
DataScanner shows blank screen Camera access denied, device not supported
Document edges not detected Low contrast, non-rectangular, glare
Real-time scanning too slow Processing every frame, region too large

Mandatory First Steps

Before investigating code, run these diagnostics:

Step 1: Verify Detection with Diagnostic Code

let request = VNGenerateForegroundInstanceMaskRequest()  // Or hand/body pose
let handler = VNImageRequestHandler(cgImage: testImage)

do {
    try handler.perform([request])

    if let results = request.results {
        print("✅ Request succeeded")
        print("Result count: \(results.count)")

        if let observation = results.first as? VNInstanceMaskObservation {
            print("All instances: \(observation.allInstances)")
            print("Instance count: \(observation.allInstances.count)")
        }
    } else {
        print("⚠️ Request succeeded but no results")
    }
} catch {
    print("❌ Request failed: \(error)")
}

Expected output:

  • ✅ Request succeeded, instance count > 0 → Detection working
  • ⚠️ Request succeeded, instance count = 0 → Nothing detected (see Decision Tree)
  • ❌ Request failed → API availability issue

Step 2: Check Confidence Scores

// For hand/body pose
if let observation = request.results?.first as? VNHumanHandPoseObservation {
    let allPoints = try observation.recognizedPoints(.all)

    for (key, point) in allPoints {
        print("\(key): confidence \(point.confidence)")

        if point.confidence < 0.3 {
            print("  ⚠️ LOW CONFIDENCE - unreliable")
        }
    }
}

Expected output:

  • Most landmarks > 0.5 confidence → Good detection
  • Many landmarks < 0.3 → Poor lighting, occlusion, or edge of frame

Step 3: Verify Threading

print("🧵 Thread: \(Thread.current)")

if Thread.isMainThread {
    print("❌ Running on MAIN THREAD - will block UI!")
} else {
    print("✅ Running on background thread")
}

Expected output:

  • ✅ Background thread → Correct
  • ❌ Main thread → Move to DispatchQueue.global()

Decision Tree

Vision not working as expected?
│
├─ No results returned?
│  ├─ Check Step 1 output
│  │  ├─ "Request failed" → See Pattern 1a (API availability)
│  │  ├─ "No results" → See Pattern 1b (nothing detected)
│  │  └─ Results but count = 0 → See Pattern 1c (edge of frame)
│
├─ Landmarks have nil/low confidence?
│  ├─ Hand pose → See Pattern 2 (hand detection issues)
│  ├─ Body pose → See Pattern 3 (body detection issues)
│  └─ Face detection → See Pattern 4 (face detection issues)
│
├─ UI freezing/slow?
│  ├─ Check Step 3 (threading)
│  │  ├─ Main thread → See Pattern 5a (move to background)
│  │  └─ Background thread → See Pattern 5b (performance tuning)
│
├─ Overlays in wrong position?
│  └─ See Pattern 6 (coordinate conversion)
│
├─ Person segmentation missing people?
│  └─ See Pattern 7 (crowded scenes)
│
├─ VisionKit not working?
│  └─ See Pattern 8 (VisionKit specific)
│
├─ Text recognition issues?
│  ├─ No text detected → See Pattern 9a (image quality)
│  ├─ Wrong characters → See Pattern 9b (language/correction)
│  └─ Too slow → See Pattern 9c (recognition level)
│
├─ Barcode detection issues?
│  ├─ Barcode not detected → See Pattern 10a (symbology/size)
│  └─ Wrong payload → See Pattern 10b (barcode quality)
│
├─ DataScannerViewController issues?
│  ├─ Blank screen → See Pattern 11a (availability check)
│  └─ Items not detected → See Pattern 11b (data types)
│
└─ Document scanning issues?
   ├─ Edges not detected → See Pattern 12a (contrast/shape)
   └─ Perspective wrong → See Pattern 12b (corner points)

Diagnostic Patterns

Pattern 1a: Request Failed (API Availability)

Symptom: try handler.perform([request]) throws error

Common errors:

"VNGenerateForegroundInstanceMaskRequest is only available on iOS 17.0 or newer"
"VNDetectHumanBodyPose3DRequest is only available on iOS 17.0 or newer"

Root cause: Using iOS 17+ APIs on older deployment target

Fix:

if #available(iOS 17.0, *) {
    let request = VNGenerateForegroundInstanceMaskRequest()
    // ...
} else {
    // Fallback for iOS 14-16
    let request = VNGeneratePersonSegmentationRequest()
    // ...
}

Prevention: Check API availability in axiom-vision-ref before implementing

Time to fix: 10 min

Pattern 1b: No Results (Nothing Detected)

Symptom: request.results == nil or results.isEmpty

Diagnostic:

// 1. Save debug image to Photos
UIImageWriteToSavedPhotosAlbum(debugImage, nil, nil, nil)

// 2. Inspect visually
// - Is subject too small? (< 10% of image)
// - Is subject blurry?
// - Poor contrast with background?

Common causes:

  • Subject too small (resize or crop closer)
  • Subject too blurry (increase lighting, stabilize camera)
  • Low contrast (subject same color as background)

Fix:

// Crop image to focus on region of interest
let croppedImage = cropImage(sourceImage, to: regionOfInterest)
let handler = VNImageRequestHandler(cgImage: croppedImage)

Time to fix: 30 min

Pattern 1c: Edge of Frame Issues

Symptom: Subject detected intermittently as object moves across frame

Root cause: Partial occlusion when subject touches image edges

Diagnostic:

// Check if subject is near edges
if let observation = results.first as? VNInstanceMaskObservation {
    let mask = try observation.createScaledMask(
        for: observation.allInstances,
        croppedToInstancesContent: true
    )

    let bounds = calculateMaskBounds(mask)

    if bounds.minX < 0.1 || bounds.maxX > 0.9 ||
       bounds.minY < 0.1 || bounds.maxY > 0.9 {
        print("⚠️ Subject too close to edge")
    }
}

Fix:

// Add padding to capture area
let paddedRect = captureRect.insetBy(dx: -20, dy: -20)

// OR guide user with on-screen overlay
overlayView.addSubview(guideBox)  // Visual boundary

Time to fix: 20 min

Pattern 2: Hand Pose Issues

Symptom: VNDetectHumanHandPoseRequest returns nil or low confidence landmarks

Diagnostic:

if let observation = request.results?.first as? VNHumanHandPoseObservation {
    let thumbTip = try? observation.recognizedPoint(.thumbTip)
    let wrist = try? observation.recognizedPoint(.wrist)

    print("Thumb confidence: \(thumbTip?.confidence ?? 0)")
    print("Wrist confidence: \(wrist?.confidence ?? 0)")

    // Check hand orientation
    if let thumb = thumbTip, let wristPoint = wrist {
        let angle = atan2(
            thumb.location.y - wristPoint.location.y,
            thumb.location.x - wristPoint.location.x
        )
        print("Hand angle: \(angle * 180 / .pi) degrees")

        if abs(angle) > 80 && abs(angle) < 100 {
            print("⚠️ Hand parallel to camera (hard to detect)")
        }
    }
}

Common causes:

Cause Confidence Pattern Fix
Hand near edge Tips have low confidence Adjust framing
Hand parallel to camera All landmarks low Prompt user to rotate hand
Gloves/occlusion Fingers low, wrist high Remove gloves or change lighting
Feet detected as hands Unexpected hand detected Add chirality check or ignore

Fix for parallel hand:

// Detect and warn user
if avgConfidence < 0.4 {
    showWarning("Rotate your hand toward the camera")
}

Time to fix: 45 min

Pattern 3: Body Pose Issues

Symptom: VNDetectHumanBodyPoseRequest skips frames or returns low confidence

Diagnostic:

if let observation = request.results?.first as? VNHumanBodyPoseObservation {
    let nose = try? observation.recognizedPoint(.nose)
    let root = try? observation.recognizedPoint(.root)

    if let nosePoint = nose, let rootPoint = root {
        let bodyAngle = atan2(
            nosePoint.location.y - rootPoint.location.y,
            nosePoint.location.x - rootPoint.location.x
        )

        let angleFromVertical = abs(bodyAngle - .pi / 2)

        if angleFromVertical > .pi / 4 {
            print("⚠️ Person bent over or upside down")
        }
    }
}

Common causes:

Cause Solution
Person bent over Prompt user to stand upright
Upside down (handstand) Use ARKit instead (better for dynamic poses)
Flowing clothing Increase contrast or use tighter clothing
Multiple people overlapping Use person instance segmentation

Time to fix: 1 hour

Pattern 4: Face Detection Issues

Symptom: VNDetectFaceRectanglesRequest misses faces or returns wrong count

Diagnostic:

if let faces = request.results as? [VNFaceObservation] {
    print("Detected \(faces.count) faces")

    for face in faces {
        print("Face bounds: \(face.boundingBox)")
        print("Confidence: \(face.confidence)")

        if face.boundingBox.width < 0.1 {
            print("⚠️ Face too small")
        }
    }
}

Common causes:

  • Face < 10% of image (crop closer)
  • Profile view (use face landmarks request instead)
  • Poor lighting (increase exposure)

Time to fix: 30 min

Pattern 5a: UI Freezing (Main Thread)

Symptom: App freezes when performing Vision request

Diagnostic (Step 3 above confirms main thread)

Fix:

// BEFORE (wrong)
let request = VNGenerateForegroundInstanceMaskRequest()
try handler.perform([request])  // Blocks UI

// AFTER (correct)
DispatchQueue.global(qos: .userInitiated).async {
    let request = VNGenerateForegroundInstanceMaskRequest()
    try? handler.perform([request])

    DispatchQueue.main.async {
        // Update UI
    }
}

Time to fix: 15 min

Pattern 5b: Performance Issues (Background Thread)

Symptom: Already on background thread but still slow / dropping frames

Diagnostic:

let start = CFAbsoluteTimeGetCurrent()

try handler.perform([request])

let elapsed = CFAbsoluteTimeGetCurrent() - start
print("Request took \(elapsed * 1000)ms")

if elapsed > 0.2 {  // 200ms = too slow for real-time
    print("⚠️ Request too slow for real-time processing")
}

Common causes & fixes:

Cause Fix Time Saved
maximumHandCount = 10 Set to actual need (e.g., 2) 50-70%
Processing every frame Skip frames (process every 3rd) 66%
Full-res images Downscale to 1280x720 40-60%
Multiple requests per frame Batch or alternate requests 30-50%

Fix for real-time camera:

// Skip frames
frameCount += 1
guard frameCount % 3 == 0 else { return }

// OR downscale
let scaledImage = resizeImage(sourceImage, to: CGSize(width: 1280, height: 720))

// OR set lower hand count
request.maximumHandCount = 2  // Instead of default

Time to fix: 1 hour

Pattern 6: Coordinate Conversion

Symptom: UI overlays appear in wrong position

Diagnostic:

// Vision point (lower-left origin, normalized)
let visionPoint = recognizedPoint.location
print("Vision point: \(visionPoint)")  // e.g., (0.5, 0.8)

// Convert to UIKit
let uiX = visionPoint.x * imageWidth
let uiY = (1 - visionPoint.y) * imageHeight  // FLIP Y
print("UIKit point: (\(uiX), \(uiY))")

// Verify overlay
overlayView.center = CGPoint(x: uiX, y: uiY)

Common mistakes:

// ❌ WRONG (no Y flip)
let uiPoint = CGPoint(
    x: axiom-visionPoint.x * width,
    y: axiom-visionPoint.y * height
)

// ❌ WRONG (forgot to scale from normalized)
let uiPoint = CGPoint(
    x: axiom-visionPoint.x,
    y: 1 - visionPoint.y
)

// ✅ CORRECT
let uiPoint = CGPoint(
    x: axiom-visionPoint.x * width,
    y: (1 - visionPoint.y) * height
)

Time to fix: 20 min

Pattern 7: Crowded Scenes (>4 People)

Symptom: VNGeneratePersonInstanceMaskRequest misses people or combines them

Diagnostic:

// Count faces
let faceRequest = VNDetectFaceRectanglesRequest()
try handler.perform([faceRequest])

let faceCount = faceRequest.results?.count ?? 0
print("Detected \(faceCount) faces")

// Person instance segmentation
let personRequest = VNGeneratePersonInstanceMaskRequest()
try handler.perform([personRequest])

let personCount = (personRequest.results?.first as? VNInstanceMaskObservation)?.allInstances.count ?? 0
print("Detected \(personCount) people")

if faceCount > 4 && personCount <= 4 {
    print("⚠️ Crowded scene - some people combined or missing")
}

Fix:

if faceCount > 4 {
    // Fallback: Use single mask for all people
    let singleMaskRequest = VNGeneratePersonSegmentationRequest()
    try handler.perform([singleMaskRequest])

    // OR guide user
    showWarning("Please reduce number of people in frame (max 4)")
}

Time to fix: 30 min

Pattern 8: VisionKit Specific Issues

Symptom: ImageAnalysisInteraction not showing subject lifting UI

Diagnostic:

// 1. Check interaction types
print("Interaction types: \(interaction.preferredInteractionTypes)")

// 2. Check if analysis is set
print("Analysis: \(interaction.analysis != nil ? "set" : "nil")")

// 3. Check if view supports interaction
if let view = interaction.view {
    print("View: \(view)")
} else {
    print("❌ View not set")
}

Common causes:

Symptom Cause Fix
No UI appears analysis not set Call analyzer.analyze() and set result
UI appears but no subject lifting Wrong interaction type Set .imageSubject or .automatic
Crash on interaction View removed before interaction Keep view in memory

Fix:

// Ensure analysis is set
let analyzer = ImageAnalyzer()
let analysis = try await analyzer.analyze(image, configuration: config)

interaction.analysis = analysis  // Required!
interaction.preferredInteractionTypes = .imageSubject

Time to fix: 20 min

Pattern 9a: Text Not Detected (Image Quality)

Symptom: VNRecognizeTextRequest returns no results or empty strings

Diagnostic:

let request = VNRecognizeTextRequest()
request.recognitionLevel = .accurate

try handler.perform([request])

if request.results?.isEmpty ?? true {
    print("❌ No text detected")

    // Check image quality
    print("Image size: \(image.size)")
    print("Minimum text height: \(request.minimumTextHeight)")
}

for obs in request.results as? [VNRecognizedTextObservation] ?? [] {
    let top = obs.topCandidates(3)
    for candidate in top {
        print("'\(candidate.string)' confidence: \(candidate.confidence)")
    }
}

Common causes:

Cause Symptom Fix
Blurry image No results Improve lighting, stabilize camera
Text too small No results Lower minimumTextHeight or crop closer
Stylized font Misread or no results Try .accurate recognition level
Low contrast Partial results Improve lighting, increase image contrast
Rotated text No results with .fast Use .accurate (handles rotation)

Fix for small text:

// Lower minimum text height (default ignores very small text)
request.minimumTextHeight = 0.02  // 2% of image height

Time to fix: 30 min

Pattern 9b: Wrong Characters (Language/Correction)

Symptom: Text is detected but characters are wrong (e.g., "C001" → "COOL")

Diagnostic:

// Check all candidates, not just first
for observation in results {
    let candidates = observation.topCandidates(5)
    for (i, candidate) in candidates.enumerated() {
        print("Candidate \(i): '\(candidate.string)' (\(candidate.confidence))")
    }
}

Common causes:

Input Type Problem Fix
Serial numbers Language correction "fixes" them Disable usesLanguageCorrection
Technical codes Misread as words Add to customWords
Non-English Wrong ML model Set correct recognitionLanguages
House numbers Stylized → misread Check all candidates, not just top

Fix for codes/serial numbers:

let request = VNRecognizeTextRequest()
request.usesLanguageCorrection = false  // Don't "fix" codes

// Post-process with domain knowledge
func correctSerialNumber(_ text: String) -> String {
    text.replacingOccurrences(of: "O", with: "0")
        .replacingOccurrences(of: "l", with: "1")
        .replacingOccurrences(of: "S", with: "5")
}

Time to fix: 30 min

Pattern 9c: Text Recognition Too Slow

Symptom: Text recognition takes >500ms, real-time camera drops frames

Diagnostic:

let start = CFAbsoluteTimeGetCurrent()
try handler.perform([request])
let elapsed = CFAbsoluteTimeGetCurrent() - start

print("Recognition took \(elapsed * 1000)ms")
print("Recognition level: \(request.recognitionLevel == .fast ? "fast" : "accurate")")
print("Language correction: \(request.usesLanguageCorrection)")

Common causes & fixes:

Cause Fix Speedup
Using .accurate for real-time Switch to .fast 3-5x
Language correction enabled Disable for codes 20-30%
Full image processing Use regionOfInterest 2-4x
Processing every frame Skip frames 50-70%

Fix for real-time:

request.recognitionLevel = .fast
request.usesLanguageCorrection = false
request.regionOfInterest = CGRect(x: 0.1, y: 0.3, width: 0.8, height: 0.4)

// Skip frames
frameCount += 1
guard frameCount % 3 == 0 else { return }

Time to fix: 30 min

Pattern 10a: Barcode Not Detected (Symbology/Size)

Symptom: VNDetectBarcodesRequest returns no results

Diagnostic:

let request = VNDetectBarcodesRequest()
// Don't specify symbologies to detect all types
try handler.perform([request])

if let results = request.results as? [VNBarcodeObservation] {
    print("Found \(results.count) barcodes")
    for barcode in results {
        print("Type: \(barcode.symbology)")
        print("Payload: \(barcode.payloadStringValue ?? "nil")")
        print("Bounds: \(barcode.boundingBox)")
    }
} else {
    print("❌ No barcodes detected")
}

Common causes:

Cause Symptom Fix
Wrong symbology Not detected Don't filter, or add correct type
Barcode too small Not detected Move camera closer, crop image
Glare/reflection Not detected Change angle, improve lighting
Damaged barcode Partial/no detection Clean barcode, improve image
Using revision 1 Only one code Use revision 2+ for multiple

Fix for small barcodes:

// Crop to barcode region for better detection
let croppedHandler = VNImageRequestHandler(
    cgImage: croppedImage,
    options: [:]
)

Time to fix: 20 min

Pattern 10b: Wrong Barcode Payload

Symptom: Barcode detected but payloadStringValue is wrong or nil

Diagnostic:

if let barcode = results.first {
    print("String payload: \(barcode.payloadStringValue ?? "nil")")
    print("Raw payload: \(barcode.payloadData ?? Data())")
    print("Symbology: \(barcode.symbology)")
    print("Confidence: Implicit (always 1.0 for barcodes)")
}

Common causes:

Cause Fix
Binary barcode (not string) Use payloadData instead
Damaged code Re-scan or clean barcode
Wrong symbology assumed Check actual symbology value

Time to fix: 15 min

Pattern 11a: DataScanner Blank Screen

Symptom: DataScannerViewController shows black/blank when presented

Diagnostic:

// Check support first
print("isSupported: \(DataScannerViewController.isSupported)")
print("isAvailable: \(DataScannerViewController.isAvailable)")

// Check camera permission
let status = AVCaptureDevice.authorizationStatus(for: .video)
print("Camera access: \(status.rawValue)")

Common causes:

Symptom Cause Fix
isSupported = false Device lacks camera/chip Check before presenting
isAvailable = false Parental controls or access denied Request camera permission
Black screen Camera in use by another app Ensure exclusive access
Crash on present Missing entitlements Add camera usage description

Fix:

guard DataScannerViewController.isSupported else {
    showError("Scanning not supported on this device")
    return
}

guard DataScannerViewController.isAvailable else {
    // Request camera access
    AVCaptureDevice.requestAccess(for: .video) { granted in
        // Retry after access granted
    }
    return
}

Time to fix: 15 min

Pattern 11b: DataScanner Items Not Detected

Symptom: DataScanner shows camera but doesn't recognize items

Diagnostic:

// Check recognized data types
print("Data types: \(scanner.recognizedDataTypes)")

// Add delegate to see what's happening
func dataScanner(_ scanner: DataScannerViewController,
                 didAdd items: [RecognizedItem],
                 allItems: [RecognizedItem]) {
    print("Added \(items.count) items, total: \(allItems.count)")
    for item in items {
        switch item {
        case .text(let text): print("Text: \(text.transcript)")
        case .barcode(let barcode): print("Barcode: \(barcode.payloadStringValue ?? "")")
        @unknown default: break
        }
    }
}

Common causes:

Cause Fix
Wrong data types Add correct .barcode(symbologies:) or .text()
Text content type filter Remove filter or use correct type
Camera too close/far Adjust distance
Poor lighting Improve lighting

Time to fix: 20 min

Pattern 12a: Document Edges Not Detected

Symptom: VNDetectDocumentSegmentationRequest returns no results

Diagnostic:

let request = VNDetectDocumentSegmentationRequest()
try handler.perform([request])

if let observation = request.results?.first {
    print("Document found at: \(observation.boundingBox)")
    print("Corners: TL=\(observation.topLeft), TR=\(observation.topRight)")
} else {
    print("❌ No document detected")
}

Common causes:

Cause Fix
Low contrast Use contrasting background
Non-rectangular ML expects rectangular documents
Glare/reflection Change lighting angle
Document fills frame Need some background visible

Fix: Use VNDocumentCameraViewController for guided user experience with live feedback.

Time to fix: 15 min

Pattern 12b: Perspective Correction Wrong

Symptom: Document extracted but distorted

Diagnostic:

// Verify corner order
print("TopLeft: \(observation.topLeft)")
print("TopRight: \(observation.topRight)")
print("BottomLeft: \(observation.bottomLeft)")
print("BottomRight: \(observation.bottomRight)")

// Check if corners are in expected positions
// TopLeft should have larger Y than BottomLeft (Vision uses lower-left origin)

Common causes:

Cause Fix
Corner order wrong Vision uses counterclockwise from top-left
Coordinate system Convert normalized to pixel coordinates
Filter parameters wrong Check CIPerspectiveCorrection parameters

Fix:

// Scale normalized to image coordinates
func scaled(_ point: CGPoint, to size: CGSize) -> CGPoint {
    CGPoint(x: point.x * size.width, y: point.y * size.height)
}

Time to fix: 20 min

Production Crisis Scenario

Situation: App Store review rejected for "app freezes when tapping analyze button"

Triage (5 min):

  1. Confirm Vision running on main thread → Pattern 5a
  2. Verify on older device (iPhone 12) → Freezes
  3. Check profiling: 800ms on main thread

Fix (15 min):

@IBAction func analyzeTapped(_ sender: UIButton) {
    showLoadingIndicator()

    DispatchQueue.global(qos: .userInitiated).async { [weak self] in
        let request = VNGenerateForegroundInstanceMaskRequest()
        // ... perform request

        DispatchQueue.main.async {
            self?.hideLoadingIndicator()
            self?.updateUI(with: results)
        }
    }
}

Communicate to PM: "App Store rejection due to Vision processing on main thread. Fixed by moving to background queue (industry standard). Testing on iPhone 12 confirms fix. Safe to resubmit."

Quick Reference Table

Symptom Likely Cause First Check Pattern Est. Time
No results Nothing detected Step 1 output 1b/1c 30 min
Intermittent detection Edge of frame Subject position 1c 20 min
Hand missing landmarks Low confidence Step 2 (confidence) 2 45 min
Body pose skipped Person bent over Body angle 3 1 hour
UI freezes Main thread Step 3 (threading) 5a 15 min
Slow processing Performance tuning Request timing 5b 1 hour
Wrong overlay position Coordinates Print points 6 20 min
Missing people (>4) Crowded scene Face count 7 30 min
VisionKit no UI Analysis not set Interaction state 8 20 min
Text not detected Image quality Results count 9a 30 min
Wrong characters Language settings Candidates list 9b 30 min
Text recognition slow Recognition level Timing 9c 30 min
Barcode not detected Symbology/size Results dump 10a 20 min
Wrong barcode payload Damaged/binary Payload data 10b 15 min
DataScanner blank Availability isSupported/isAvailable 11a 15 min
DataScanner no items Data types recognizedDataTypes 11b 20 min
Document edges missing Contrast/shape Results check 12a 15 min
Perspective wrong Corner order Corner positions 12b 20 min

Resources

WWDC: 2019-234, 2021-10041, 2022-10024, 2022-10025, 2025-272, 2023-10176, 2020-10653

Docs: /vision, /vision/vnrecognizetextrequest, /visionkit

Skills: axiom-vision, axiom-vision-ref