| name | foundation-models-diag |
| description | Use when debugging Foundation Models issues — context exceeded, guardrail violations, slow generation, availability problems, unsupported language, or unexpected output. Systematic diagnostics with production crisis defense. |
| skill_type | diagnostic |
| version | 1.0.0 |
| last_updated | Wed Dec 03 2025 00:00:00 GMT+0000 (Coordinated Universal Time) |
| apple_platforms | iOS 26+, macOS 26+, iPadOS 26+, visionOS 26+ |
Foundation Models Diagnostics
Overview
Foundation Models issues manifest as context window exceeded errors, guardrail violations, slow generation, availability failures, and unexpected output. Core principle 80% of Foundation Models problems stem from misunderstanding model capabilities (3B parameter device-scale model, not world knowledge), context limits (4096 tokens), or availability requirements—not framework bugs.
Red Flags — Suspect Foundation Models Issue
If you see ANY of these, suspect a Foundation Models misunderstanding, not framework breakage:
- Generation takes >5 seconds
- Error:
exceededContextWindowSize - Error:
guardrailViolation - Error:
unsupportedLanguageOrLocale - Model gives hallucinated/wrong output
- UI freezes during generation
- Feature works in simulator but not on device
- ❌ FORBIDDEN "Foundation Models is broken, we need a different AI"
- Foundation Models powers Apple Intelligence across millions of devices
- Wrong output = wrong use case (world knowledge vs summarization)
- Do not rationalize away the issue—diagnose it
Critical distinction Foundation Models is a device-scale model (3B parameters) optimized for summarization, extraction, classification—NOT world knowledge or complex reasoning. Using it for the wrong task guarantees poor results.
Mandatory First Steps
ALWAYS run these FIRST (before changing code):
// 1. Check availability
let availability = SystemLanguageModel.default.availability
switch availability {
case .available:
print("✅ Available")
case .unavailable(let reason):
print("❌ Unavailable: \(reason)")
// Possible reasons:
// - Device not Apple Intelligence-capable
// - Region not supported
// - User not opted in
}
// Record: "Available? Yes/no, reason if not"
// 2. Check supported languages
let supported = SystemLanguageModel.default.supportedLanguages
print("Supported languages: \(supported)")
print("Current locale: \(Locale.current.language)")
if !supported.contains(Locale.current.language) {
print("⚠️ Current language not supported!")
}
// Record: "Language supported? Yes/no"
// 3. Check context usage
let session = LanguageModelSession()
// After some interactions:
print("Transcript entries: \(session.transcript.entries.count)")
// Rough estimation (not exact):
let transcriptText = session.transcript.entries
.map { $0.content }
.joined()
print("Approximate chars: \(transcriptText.count)")
print("Rough token estimate: \(transcriptText.count / 3)")
// 4096 token limit ≈ 12,000 characters
// Record: "Approaching context limit? Yes/no"
// 4. Profile with Instruments
// Run with Foundation Models Instrument template
// Check:
// - Initial model load time
// - Token counts (input/output)
// - Generation time per request
// - Areas for optimization
// Record: "Latency profile: [numbers from Instruments]"
// 5. Inspect transcript for debugging
print("Full transcript:")
for entry in session.transcript.entries {
print("Entry: \(entry.content.prefix(100))...")
}
// Record: "Any unusual entries? Repeated content?"
What this tells you
- Unavailable → Proceed to Pattern 1a/1b/1c (availability issues)
- Context exceeded → Proceed to Pattern 2a (token limit)
- Guardrail error → Proceed to Pattern 2b (content policy)
- Language error → Proceed to Pattern 2c (unsupported language)
- Wrong output → Proceed to Pattern 3a/3b/3c (output quality)
- Slow generation → Proceed to Pattern 4a/4b/4c/4d (performance)
- UI frozen → Proceed to Pattern 5a (main thread blocking)
MANDATORY INTERPRETATION
Before changing ANY code, identify ONE of these:
- If
availability = .unavailable→ Device/region/opt-in issue (not code bug) - If error is
exceededContextWindowSize→ Too many tokens (condense transcript) - If error is
guardrailViolation→ Content policy triggered (not model failure) - If error is
unsupportedLanguageOrLocale→ Language not supported (check supported list) - If output is hallucinated → Wrong use case (world knowledge vs extraction)
- If generation >5 seconds → Not streaming or need optimization
- If UI frozen → Calling on main thread (use Task {})
If diagnostics are contradictory or unclear
- STOP. Do NOT proceed to patterns yet
- Add detailed logging to every
respond()call - Run with Instruments Foundation Models template
- Establish baseline: what's actually happening vs what you assumed
Decision Tree
Foundation Models problem?
│
├─ Won't start?
│ ├─ .unavailable → Availability issue
│ │ ├─ Device not capable? → Pattern 1a (device requirement)
│ │ ├─ Region restriction? → Pattern 1b (regional availability)
│ │ └─ User not opted in? → Pattern 1c (Settings check)
│ │
├─ Generation fails?
│ ├─ exceededContextWindowSize → Context limit
│ │ └─ Long conversation or verbose prompts? → Pattern 2a (condense)
│ │
│ ├─ guardrailViolation → Content policy
│ │ └─ Sensitive or inappropriate content? → Pattern 2b (handle gracefully)
│ │
│ ├─ unsupportedLanguageOrLocale → Language issue
│ │ └─ Non-English or unsupported language? → Pattern 2c (language check)
│ │
│ └─ Other error → General error handling
│ └─ Unknown error type? → Pattern 2d (catch-all)
│
├─ Output wrong?
│ ├─ Hallucinated facts → Wrong model use
│ │ └─ Asking for world knowledge? → Pattern 3a (use case mismatch)
│ │
│ ├─ Wrong structure → Parsing issue
│ │ └─ Manual JSON parsing? → Pattern 3b (use @Generable)
│ │
│ ├─ Missing data → Tool needed
│ │ └─ Need external information? → Pattern 3c (tool calling)
│ │
│ └─ Inconsistent output → Sampling issue
│ └─ Different results each time? → Pattern 3d (temperature/greedy)
│
├─ Too slow?
│ ├─ Initial delay (1-2s) → Model loading
│ │ └─ First request slow? → Pattern 4a (prewarm)
│ │
│ ├─ Long wait for results → Not streaming
│ │ └─ User waits 3-5s? → Pattern 4b (streaming)
│ │
│ ├─ Verbose schema → Token overhead
│ │ └─ Large @Generable type? → Pattern 4c (includeSchemaInPrompt)
│ │
│ └─ Complex prompt → Too much processing
│ └─ Massive prompt or task? → Pattern 4d (break down)
│
└─ UI frozen?
└─ Main thread blocked → Async issue
└─ App unresponsive during generation? → Pattern 5a (Task {})
Diagnostic Patterns
Pattern 1a: Device Not Capable
Symptom:
SystemLanguageModel.default.availability = .unavailable- Reason: Device not Apple Intelligence-capable
Diagnosis:
let availability = SystemLanguageModel.default.availability
switch availability {
case .available:
print("✅ Available")
case .unavailable(let reason):
print("❌ Reason: \(reason)")
// Check if device-related
}
Fix:
// ❌ BAD - No availability UI
let session = LanguageModelSession() // Crashes on unsupported devices
// ✅ GOOD - Graceful UI
struct AIFeatureView: View {
@State private var availability = SystemLanguageModel.default.availability
var body: some View {
switch availability {
case .available:
AIContentView()
case .unavailable:
VStack {
Image(systemName: "cpu")
Text("AI features require Apple Intelligence")
.font(.headline)
Text("Available on iPhone 15 Pro and later")
.font(.caption)
.foregroundColor(.secondary)
}
}
}
}
Time cost: 5-10 minutes to add UI
Pattern 1b: Regional Availability
Symptom:
- Feature works for some users, not others
- .unavailable due to region restrictions
Diagnosis: Foundation Models requires:
- Supported region (e.g., US, UK, Australia initially)
- May expand over time
Fix:
// ✅ GOOD - Clear messaging
switch SystemLanguageModel.default.availability {
case .available:
// proceed
case .unavailable(let reason):
// Show region-specific message
Text("AI features not yet available in your region")
Text("Check Settings → Apple Intelligence for availability")
}
Time cost: 5 minutes
Pattern 1c: User Not Opted In
Symptom:
- Device capable, region supported
- Still .unavailable
Diagnosis: User must opt in to Apple Intelligence in Settings
Fix:
// ✅ GOOD - Direct user to settings
switch SystemLanguageModel.default.availability {
case .available:
// proceed
case .unavailable:
VStack {
Text("Enable Apple Intelligence")
Text("Settings → Apple Intelligence → Enable")
Button("Open Settings") {
if let url = URL(string: UIApplication.openSettingsURLString) {
UIApplication.shared.open(url)
}
}
}
}
Time cost: 10 minutes
Pattern 2a: Context Window Exceeded
Symptom:
Error: LanguageModelSession.GenerationError.exceededContextWindowSize
Diagnosis:
- 4096 token limit (input + output)
- Long conversations accumulate tokens
- Verbose prompts eat into limit
Fix:
// ❌ BAD - Unhandled error
let response = try await session.respond(to: prompt)
// Crashes after ~10-15 turns
// ✅ GOOD - Condense transcript
var session = LanguageModelSession()
do {
let response = try await session.respond(to: prompt)
} catch LanguageModelSession.GenerationError.exceededContextWindowSize {
// Condense and continue
session = condensedSession(from: session)
let response = try await session.respond(to: prompt)
}
func condensedSession(from previous: LanguageModelSession) -> LanguageModelSession {
let entries = previous.transcript.entries
guard entries.count > 2 else {
return LanguageModelSession(transcript: previous.transcript)
}
// Keep: first (instructions) + last (recent context)
var condensed = [entries.first!, entries.last!]
let transcript = Transcript(entries: condensed)
return LanguageModelSession(transcript: transcript)
}
Time cost: 15-20 minutes to implement condensing
Pattern 2b: Guardrail Violation
Symptom:
Error: LanguageModelSession.GenerationError.guardrailViolation
Diagnosis:
- User input triggered content policy
- Violence, hate speech, illegal activities
- Model refuses to generate
Fix:
// ✅ GOOD - Graceful handling
do {
let response = try await session.respond(to: userInput)
print(response.content)
} catch LanguageModelSession.GenerationError.guardrailViolation {
// Show user-friendly message
print("I can't help with that request")
// Log for review (but don't show user input to avoid storing harmful content)
}
Time cost: 5-10 minutes
Pattern 2c: Unsupported Language
Symptom:
Error: LanguageModelSession.GenerationError.unsupportedLanguageOrLocale
Diagnosis: User input in language model doesn't support
Fix:
// ❌ BAD - No language check
let response = try await session.respond(to: userInput)
// Crashes if unsupported language
// ✅ GOOD - Check first
let supported = SystemLanguageModel.default.supportedLanguages
guard supported.contains(Locale.current.language) else {
// Show disclaimer
print("Language not supported. Currently supports: \(supported)")
return
}
// Also handle errors
do {
let response = try await session.respond(to: userInput)
} catch LanguageModelSession.GenerationError.unsupportedLanguageOrLocale {
print("Please use English or another supported language")
}
Time cost: 10 minutes
Pattern 2d: General Error Handling
Symptom: Unknown error types
Fix:
// ✅ GOOD - Comprehensive error handling
do {
let response = try await session.respond(to: prompt)
print(response.content)
} catch LanguageModelSession.GenerationError.exceededContextWindowSize {
// Handle context overflow
session = condensedSession(from: session)
} catch LanguageModelSession.GenerationError.guardrailViolation {
// Handle content policy
showMessage("Cannot generate that content")
} catch LanguageModelSession.GenerationError.unsupportedLanguageOrLocale {
// Handle language issue
showMessage("Language not supported")
} catch {
// Catch-all for unexpected errors
print("Unexpected error: \(error)")
showMessage("Something went wrong. Please try again.")
}
Time cost: 10-15 minutes
Pattern 3a: Hallucinated Output (Wrong Use Case)
Symptom:
- Model gives factually incorrect answers
- Makes up information
Diagnosis: Using model for world knowledge (wrong use case)
Fix:
// ❌ BAD - Wrong use case
let prompt = "Who is the president of France?"
let response = try await session.respond(to: prompt)
// Will hallucinate or give outdated info
// ✅ GOOD - Use server LLM for world knowledge
// Foundation Models is for:
// - Summarization
// - Extraction
// - Classification
// - Content generation
// OR: Use Tool calling with external data source
struct GetFactTool: Tool {
let name = "getFact"
let description = "Fetch factual information from verified source"
@Generable
struct Arguments {
let query: String
}
func call(arguments: Arguments) async throws -> ToolOutput {
// Fetch from Wikipedia API, news API, etc.
let fact = await fetchFactFromAPI(arguments.query)
return ToolOutput(fact)
}
}
Time cost: 20-30 minutes to implement tool OR switch to appropriate AI
Pattern 3b: Wrong Structure (Not Using @Generable)
Symptom:
- Parsing errors
- Invalid JSON
- Wrong keys
Diagnosis: Manual JSON parsing instead of @Generable
Fix:
// ❌ BAD - Manual parsing
let prompt = "Generate person as JSON"
let response = try await session.respond(to: prompt)
let data = response.content.data(using: .utf8)!
let person = try JSONDecoder().decode(Person.self, from: data) // CRASHES
// ✅ GOOD - @Generable
@Generable
struct Person {
let name: String
let age: Int
}
let response = try await session.respond(
to: "Generate a person",
generating: Person.self
)
// response.content is type-safe Person, guaranteed structure
Time cost: 10 minutes to convert to @Generable
Pattern 3c: Missing Data (Need Tool)
Symptom:
- Model doesn't have required information
- Output is vague or generic
Diagnosis: Need external data (weather, locations, contacts)
Fix:
// ❌ BAD - No external data
let response = try await session.respond(
to: "What's the weather in Tokyo?"
)
// Will make up weather data
// ✅ GOOD - Tool calling
import WeatherKit
struct GetWeatherTool: Tool {
let name = "getWeather"
let description = "Get current weather for a city"
@Generable
struct Arguments {
let city: String
}
func call(arguments: Arguments) async throws -> ToolOutput {
// Fetch real weather
let weather = await WeatherService.shared.weather(for: arguments.city)
return ToolOutput("Temperature: \(weather.temperature)°F")
}
}
let session = LanguageModelSession(tools: [GetWeatherTool()])
let response = try await session.respond(to: "What's the weather in Tokyo?")
// Uses real weather data
Time cost: 20-30 minutes to implement tool
Pattern 3d: Inconsistent Output (Sampling)
Symptom:
- Different output every time for same prompt
- Need consistent results for testing
Diagnosis: Random sampling (default behavior)
Fix:
// Default: Random sampling
let response1 = try await session.respond(to: "Write a haiku")
let response2 = try await session.respond(to: "Write a haiku")
// Different every time
// ✅ For deterministic output (testing/demos)
let response = try await session.respond(
to: "Write a haiku",
options: GenerationOptions(sampling: .greedy)
)
// Same output for same prompt (given same model version)
// ✅ For low variance
let response = try await session.respond(
to: "Classify this article",
options: GenerationOptions(temperature: 0.5)
)
// Slightly varied but focused
// ✅ For high creativity
let response = try await session.respond(
to: "Write a creative story",
options: GenerationOptions(temperature: 2.0)
)
// Very diverse output
Time cost: 2-5 minutes
Pattern 4a: Initial Latency (Prewarm)
Symptom:
- First generation takes 1-2 seconds to start
- Subsequent requests faster
Diagnosis: Model loading time
Fix:
// ❌ BAD - Load on user interaction
Button("Generate") {
Task {
let session = LanguageModelSession() // 1-2s delay here
let response = try await session.respond(to: prompt)
}
}
// ✅ GOOD - Prewarm on init
class ViewModel: ObservableObject {
private var session: LanguageModelSession?
init() {
// Prewarm before user interaction
Task {
self.session = LanguageModelSession(instructions: "...")
}
}
func generate(prompt: String) async throws -> String {
guard let session = session else {
// Fallback if not ready
self.session = LanguageModelSession()
return try await self.session!.respond(to: prompt).content
}
return try await session.respond(to: prompt).content
}
}
Time cost: 10 minutes Latency saved: 1-2 seconds on first request
Pattern 4b: Long Generation (Streaming)
Symptom:
- User waits 3-5 seconds seeing nothing
- Then entire result appears at once
Diagnosis: Not streaming long generations
Fix:
// ❌ BAD - No streaming
let response = try await session.respond(
to: "Generate 5-day itinerary",
generating: Itinerary.self
)
// User waits 4 seconds seeing nothing
// ✅ GOOD - Streaming
@Generable
struct Itinerary {
var destination: String
var days: [DayPlan]
}
let stream = session.streamResponse(
to: "Generate 5-day itinerary to Tokyo",
generating: Itinerary.self
)
for try await partial in stream {
// Update UI incrementally
self.itinerary = partial
}
// User sees destination in 0.5s, then days progressively
Time cost: 15-20 minutes Perceived latency: 0.5s vs 4s
Pattern 4c: Large Schema Overhead
Symptom:
- Subsequent requests with same @Generable type slow
Diagnosis: Schema re-inserted into prompt every time
Fix:
// First request - schema inserted automatically
let first = try await session.respond(
to: "Generate first person",
generating: Person.self
)
// ✅ Subsequent requests - skip schema insertion
let second = try await session.respond(
to: "Generate another person",
generating: Person.self,
options: GenerationOptions(includeSchemaInPrompt: false)
)
Time cost: 2 minutes Latency saved: 10-20% per request
Pattern 4d: Complex Prompt (Break Down)
Symptom:
- Generation takes >5 seconds
- Poor quality results
Diagnosis: Prompt too complex for single generation
Fix:
// ❌ BAD - One massive prompt
let prompt = """
Generate complete 7-day itinerary with hotels, restaurants,
activities, transportation, budget, tips, and local customs
"""
// 5-8 seconds, poor quality
// ✅ GOOD - Break into steps
let overview = try await session.respond(
to: "Generate high-level 7-day plan for Tokyo"
)
var dayDetails: [DayPlan] = []
for day in 1...7 {
let detail = try await session.respond(
to: "Detail activities and restaurants for day \(day) in Tokyo",
generating: DayPlan.self
)
dayDetails.append(detail.content)
}
// Total time similar, but better quality and progressive results
Time cost: 20-30 minutes Quality improvement: Significantly better
Pattern 5a: UI Frozen (Main Thread Blocking)
Symptom:
- App unresponsive during generation
- UI freezes for seconds
Diagnosis:
Calling respond() on main thread synchronously
Fix:
// ❌ BAD - Blocking main thread
Button("Generate") {
let response = try await session.respond(to: prompt)
// UI frozen for 2-5 seconds!
}
// ✅ GOOD - Async task
Button("Generate") {
Task {
do {
let response = try await session.respond(to: prompt)
// Update UI on main thread
await MainActor.run {
self.result = response.content
}
} catch {
print("Error: \(error)")
}
}
}
Time cost: 5 minutes UX improvement: Massive (no frozen UI)
Production Crisis Scenario
Context
Situation: You just launched an AI-powered feature using Foundation Models. Within 2 hours:
- 20% of users report "AI feature doesn't work"
- App Store reviews dropping: "New AI broken"
- VP of Product emailing: "What's the ETA on fix?"
- Engineering manager: "Should we roll back?"
Pressure Signals:
- 🚨 Revenue impact: Feature is key selling point for new app version
- ⏰ Time pressure: "Fix it NOW"
- 👔 Executive visibility: VP watching
- 📉 Public reputation: App Store reviews visible to all
Rationalization Traps
DO NOT fall into these traps:
"Disable the feature"
- Loses product differentiation
- Admits defeat
- Doesn't learn what went wrong
"Roll back to previous version"
- Loses weeks of work
- Doesn't fix root cause
- Users still angry
"It works for me"
- Simulator ≠ real devices
- Your device ≠ all devices
- Ignores real problem
"Switch to ChatGPT API"
- Violates privacy
- Expensive at scale
- Doesn't address availability issue
MANDATORY Protocol
Phase 1: Identify (5 minutes)
// Check error distribution
// What percentage seeing what error?
// Run this on test devices:
let availability = SystemLanguageModel.default.availability
switch availability {
case .available:
print("✅ Available")
case .unavailable(let reason):
print("❌ Unavailable: \(reason)")
}
// Hypothesis:
// - If 20% unavailable → Availability issue (device/region/opt-in)
// - If 20% getting errors → Code bug
// - If 20% seeing wrong results → Use case mismatch
Results: Discover that 20% of users have devices without Apple Intelligence support.
Phase 2: Confirm (5 minutes)
// Check which devices affected
// iPhone 15 Pro+ = ✅ Available
// iPhone 15 = ❌ Unavailable
// iPhone 14 = ❌ Unavailable
// Conclusion: Availability issue, not code bug
Root cause: Feature assumes all users have Apple Intelligence. 20% don't.
Phase 3: Device Requirements (5 minutes)
Verify:
- Apple Intelligence requires iPhone 15 Pro or later
- Or iPad with M1+ chip
- Or Mac with Apple silicon
20% of user base = older devices
Phase 4: Implement Fix (15 minutes)
// ✅ Add availability check + graceful UI
struct AIFeatureView: View {
@State private var availability = SystemLanguageModel.default.availability
var body: some View {
switch availability {
case .available:
// Show AI feature
AIContentView()
case .unavailable:
// Graceful fallback
VStack {
Image(systemName: "sparkles")
.font(.largeTitle)
.foregroundColor(.secondary)
Text("AI-Powered Features")
.font(.headline)
Text("Available on iPhone 15 Pro and later")
.font(.subheadline)
.foregroundColor(.secondary)
.multilineTextAlignment(.center)
// Offer alternative
Button("Use Standard Mode") {
// Show non-AI fallback
}
}
}
}
}
Phase 5: Deploy (20 minutes)
Test on multiple devices (15 min)
- iPhone 15 Pro: ✅ Shows AI feature
- iPhone 14: ✅ Shows graceful message
- iPad Pro M1: ✅ Shows AI feature
Submit hotfix build (5 min)
Communication Template
To VP of Product (immediate):
Root cause identified:
The AI feature requires Apple Intelligence (iPhone 15 Pro+).
20% of our users have older devices. We didn't check availability.
Fix: Added availability check with graceful fallback UI.
Timeline:
- Hotfix ready: Now
- TestFlight: 10 minutes
- App Store submission: 30 minutes
- Review: 24-48 hours (requesting expedited)
Impact mitigation:
- 80% of users see working AI feature
- 20% see clear message + standard mode fallback
- No functionality lost, just graceful degradation
To Engineering Team:
Post-mortem items:
1. Add availability check to launch checklist
2. Test on non-Apple-Intelligence devices
3. Document device requirements clearly
4. Add analytics for availability status
Time Saved
- Panic path (disable/rollback): 2 hours of meetings + lost work
- Proper diagnosis: 45 minutes root cause → fix → deploy
What We Learned
- Always check availability before creating session
- Test on real devices across device generations
- Graceful degradation better than feature removal
- Clear messaging to users about requirements
Quick Reference Table
| Symptom | Cause | Check | Pattern | Time |
|---|---|---|---|---|
| Won't start | .unavailable | SystemLanguageModel.default.availability | 1a | 5 min |
| Region issue | Not supported region | Check supported regions | 1b | 5 min |
| Not opted in | Apple Intelligence disabled | Settings check | 1c | 10 min |
| Context exceeded | >4096 tokens | Transcript length | 2a | 15 min |
| Guardrail error | Content policy | User input type | 2b | 10 min |
| Language error | Unsupported language | supportedLanguages | 2c | 10 min |
| Hallucinated output | Wrong use case | Task type check | 3a | 20 min |
| Wrong structure | No @Generable | Manual parsing? | 3b | 10 min |
| Missing data | No tool | External data needed? | 3c | 30 min |
| Inconsistent | Random sampling | Need deterministic? | 3d | 5 min |
| Initial delay | Model loading | First request slow? | 4a | 10 min |
| Long wait | No streaming | >1s generation? | 4b | 20 min |
| Schema overhead | Re-inserting schema | Subsequent requests? | 4c | 2 min |
| Complex prompt | Too much at once | >5s generation? | 4d | 30 min |
| UI frozen | Main thread | Thread check | 5a | 5 min |
Cross-References
Related Axiom Skills:
foundation-models— Discipline skill for anti-patterns, proper usage patterns, pressure scenariosfoundation-models-ref— Complete API reference with all WWDC 2025 code examples
Apple Resources:
- Foundation Models Framework Documentation
- WWDC 2025-286: Meet the Foundation Models framework
- WWDC 2025-301: Deep dive into the Foundation Models framework
- Instruments Foundation Models Template
Last Updated: 2025-12-03 Version: 1.0.0 Skill Type: Diagnostic