| name | vision-ref |
| description | Vision framework API, VNDetectHumanHandPoseRequest, VNDetectHumanBodyPoseRequest, person segmentation, face detection, VNImageRequestHandler, recognized points, joint landmarks |
| skill_type | reference |
| version | 1.0.0 |
| last_updated | Sat Dec 20 2025 00:00:00 GMT+0000 (Coordinated Universal Time) |
| apple_platforms | iOS 14+, iPadOS 14+, macOS 11+, tvOS 14+, visionOS 1+ |
Vision Framework API Reference
Comprehensive reference for Vision framework people-focused computer vision: subject segmentation, hand/body pose detection, person detection, and face analysis.
When to Use This Reference
- Implementing subject lifting using VisionKit or Vision
- Detecting hand/body poses for gesture recognition or fitness apps
- Segmenting people from backgrounds or separating multiple individuals
- Face detection and landmarks for AR effects or authentication
- Combining Vision APIs to solve complex computer vision problems
- Looking up specific API signatures and parameter meanings
Related skills: See vision for decision trees and patterns, vision-diag for troubleshooting
Vision Framework Overview
Vision provides computer vision algorithms for still images and video:
Core workflow:
- Create request (e.g.,
VNDetectHumanHandPoseRequest()) - Create handler with image (
VNImageRequestHandler(cgImage: image)) - Perform request (
try handler.perform([request])) - Access observations from
request.results
Coordinate system: Lower-left origin, normalized (0.0-1.0) coordinates
Performance: Run on background queue - resource intensive, blocks UI if on main thread
Subject Segmentation APIs
VNGenerateForegroundInstanceMaskRequest
Availability: iOS 17+, macOS 14+, tvOS 17+, visionOS 1+
Generates class-agnostic instance mask of foreground objects (people, pets, buildings, food, shoes, etc.)
Basic Usage
let request = VNGenerateForegroundInstanceMaskRequest()
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request])
guard let observation = request.results?.first as? VNInstanceMaskObservation else {
return
}
InstanceMaskObservation
allInstances: IndexSet containing all foreground instance indices (excludes background 0)
instanceMask: CVPixelBuffer with UInt8 labels (0 = background, 1+ = instance indices)
instanceAtPoint(_:): Returns instance index at normalized point
let point = CGPoint(x: 0.5, y: 0.5) // Center of image
let instance = observation.instanceAtPoint(point)
if instance == 0 {
print("Background tapped")
} else {
print("Instance \(instance) tapped")
}
Generating Masks
createScaledMask(for:croppedToInstancesContent:)
Parameters:
for:IndexSetof instances to includecroppedToInstancesContent:false= Output matches input resolution (for compositing)true= Tight crop around selected instances
Returns: Single-channel floating-point CVPixelBuffer (soft segmentation mask)
// All instances, full resolution
let mask = try observation.createScaledMask(
for: observation.allInstances,
croppedToInstancesContent: false
)
// Single instance, cropped
let instances = IndexSet(integer: 1)
let croppedMask = try observation.createScaledMask(
for: instances,
croppedToInstancesContent: true
)
Instance Mask Hit Testing
Access raw pixel buffer to map tap coordinates to instance labels:
let instanceMask = observation.instanceMask
CVPixelBufferLockBaseAddress(instanceMask, .readOnly)
defer { CVPixelBufferUnlockBaseAddress(instanceMask, .readOnly) }
let baseAddress = CVPixelBufferGetBaseAddress(instanceMask)
let width = CVPixelBufferGetWidth(instanceMask)
let bytesPerRow = CVPixelBufferGetBytesPerRow(instanceMask)
// Convert normalized tap to pixel coordinates
let pixelPoint = VNImagePointForNormalizedPoint(
CGPoint(x: normalizedX, y: normalizedY),
width: imageWidth,
height: imageHeight
)
// Calculate byte offset
let offset = Int(pixelPoint.y) * bytesPerRow + Int(pixelPoint.x)
// Read instance label
let label = UnsafeRawPointer(baseAddress!).load(
fromByteOffset: offset,
as: UInt8.self
)
let instances = label == 0 ? observation.allInstances : IndexSet(integer: Int(label))
VisionKit Subject Lifting
ImageAnalysisInteraction (iOS)
Availability: iOS 16+, iPadOS 16+
Adds system-like subject lifting UI to views:
let interaction = ImageAnalysisInteraction()
interaction.preferredInteractionTypes = .imageSubject // Or .automatic
imageView.addInteraction(interaction)
Interaction types:
.automatic: Subject lifting + Live Text + data detectors.imageSubject: Subject lifting only (no interactive text)
ImageAnalysisOverlayView (macOS)
Availability: macOS 13+
let overlayView = ImageAnalysisOverlayView()
overlayView.preferredInteractionTypes = .imageSubject
nsView.addSubview(overlayView)
Programmatic Access
ImageAnalyzer
let analyzer = ImageAnalyzer()
let configuration = ImageAnalyzer.Configuration([.text, .visualLookUp])
let analysis = try await analyzer.analyze(image, configuration: configuration)
ImageAnalysis
subjects: [Subject] - All subjects in image
highlightedSubjects: Set<Subject> - Currently highlighted (user long-pressed)
subject(at:): Async lookup of subject at normalized point (returns nil if none)
// Get all subjects
let subjects = analysis.subjects
// Look up subject at tap
if let subject = try await analysis.subject(at: tapPoint) {
// Process subject
}
// Change highlight state
analysis.highlightedSubjects = Set([subjects[0], subjects[1]])
Subject Struct
image: UIImage/NSImage - Extracted subject with transparency
bounds: CGRect - Subject boundaries in image coordinates
// Single subject image
let subjectImage = subject.image
// Composite multiple subjects
let compositeImage = try await analysis.image(for: [subject1, subject2])
Out-of-process: VisionKit analysis happens out-of-process (performance benefit, image size limited)
Person Segmentation APIs
VNGeneratePersonSegmentationRequest
Availability: iOS 15+, macOS 12+
Returns single mask containing all people in image:
let request = VNGeneratePersonSegmentationRequest()
// Configure quality level if needed
try handler.perform([request])
guard let observation = request.results?.first as? VNPixelBufferObservation else {
return
}
let personMask = observation.pixelBuffer // CVPixelBuffer
VNGeneratePersonInstanceMaskRequest
Availability: iOS 17+, macOS 14+
Returns separate masks for up to 4 people:
let request = VNGeneratePersonInstanceMaskRequest()
try handler.perform([request])
guard let observation = request.results?.first as? VNInstanceMaskObservation else {
return
}
// Same InstanceMaskObservation API as foreground instance masks
let allPeople = observation.allInstances // Up to 4 people (1-4)
// Get mask for person 1
let person1Mask = try observation.createScaledMask(
for: IndexSet(integer: 1),
croppedToInstancesContent: false
)
Limitations:
- Segments up to 4 people
- With >4 people: may miss people or combine them (typically background people)
- Use
VNDetectFaceRectanglesRequestto count faces if you need to handle crowded scenes
Hand Pose Detection
VNDetectHumanHandPoseRequest
Availability: iOS 14+, macOS 11+
Detects 21 hand landmarks per hand:
let request = VNDetectHumanHandPoseRequest()
request.maximumHandCount = 2 // Default: 2, increase if needed
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request])
for observation in request.results as? [VNHumanHandPoseObservation] ?? [] {
// Process each hand
}
Performance note: maximumHandCount affects latency. Pose computed only for hands ≤ maximum. Set to lowest acceptable value.
Hand Landmarks (21 points)
Wrist: 1 landmark
Thumb (4 landmarks):
.thumbTip.thumbIP(interphalangeal joint).thumbMP(metacarpophalangeal joint).thumbCMC(carpometacarpal joint)
Fingers (4 landmarks each):
- Tip (
.indexTip,.middleTip,.ringTip,.littleTip) - DIP (distal interphalangeal joint)
- PIP (proximal interphalangeal joint)
- MCP (metacarpophalangeal joint)
Group Keys
Access landmark groups:
| Group Key | Points |
|---|---|
.all |
All 21 landmarks |
.thumb |
4 thumb joints |
.indexFinger |
4 index finger joints |
.middleFinger |
4 middle finger joints |
.ringFinger |
4 ring finger joints |
.littleFinger |
4 little finger joints |
// Get all points
let allPoints = try observation.recognizedPoints(.all)
// Get index finger points only
let indexPoints = try observation.recognizedPoints(.indexFinger)
// Get specific point
let thumbTip = try observation.recognizedPoint(.thumbTip)
let indexTip = try observation.recognizedPoint(.indexTip)
// Check confidence
guard thumbTip.confidence > 0.5 else { return }
// Access location (normalized coordinates, lower-left origin)
let location = thumbTip.location // CGPoint
Gesture Recognition Example (Pinch)
let thumbTip = try observation.recognizedPoint(.thumbTip)
let indexTip = try observation.recognizedPoint(.indexTip)
guard thumbTip.confidence > 0.5, indexTip.confidence > 0.5 else {
return
}
let distance = hypot(
thumbTip.location.x - indexTip.location.x,
thumbTip.location.y - indexTip.location.y
)
let isPinching = distance < 0.05 // Normalized threshold
Chirality (Handedness)
let chirality = observation.chirality // .left or .right or .unknown
Body Pose Detection
VNDetectHumanBodyPoseRequest (2D)
Availability: iOS 14+, macOS 11+
Detects 18 body landmarks (2D normalized coordinates):
let request = VNDetectHumanBodyPoseRequest()
try handler.perform([request])
for observation in request.results as? [VNHumanBodyPoseObservation] ?? [] {
// Process each person
}
Body Landmarks (18 points)
Face (5 landmarks):
.nose,.leftEye,.rightEye,.leftEar,.rightEar
Arms (6 landmarks):
- Left:
.leftShoulder,.leftElbow,.leftWrist - Right:
.rightShoulder,.rightElbow,.rightWrist
Torso (7 landmarks):
.neck(between shoulders).leftShoulder,.rightShoulder(also in arm groups).leftHip,.rightHip.root(between hips)
Legs (6 landmarks):
- Left:
.leftHip,.leftKnee,.leftAnkle - Right:
.rightHip,.rightKnee,.rightAnkle
Note: Shoulders and hips appear in multiple groups
Group Keys (Body)
| Group Key | Points |
|---|---|
.all |
All 18 landmarks |
.face |
5 face landmarks |
.leftArm |
shoulder, elbow, wrist |
.rightArm |
shoulder, elbow, wrist |
.torso |
neck, shoulders, hips, root |
.leftLeg |
hip, knee, ankle |
.rightLeg |
hip, knee, ankle |
// Get all body points
let allPoints = try observation.recognizedPoints(.all)
// Get left arm only
let leftArmPoints = try observation.recognizedPoints(.leftArm)
// Get specific joint
let leftWrist = try observation.recognizedPoint(.leftWrist)
VNDetectHumanBodyPose3DRequest (3D)
Availability: iOS 17+, macOS 14+
Returns 3D skeleton with 17 joints in meters (real-world coordinates):
let request = VNDetectHumanBodyPose3DRequest()
try handler.perform([request])
guard let observation = request.results?.first as? VNHumanBodyPose3DObservation else {
return
}
// Get 3D joint position
let leftWrist = try observation.recognizedPoint(.leftWrist)
let position = leftWrist.position // simd_float4x4 matrix
let localPosition = leftWrist.localPosition // Relative to parent joint
3D Body Landmarks (17 points): Same as 2D except no ears (15 vs 18 2D landmarks)
3D Observation Properties
bodyHeight: Estimated height in meters
- With depth data: Measured height
- Without depth data: Reference height (1.8m)
heightEstimation: .measured or .reference
cameraOriginMatrix: simd_float4x4 camera position/orientation relative to subject
pointInImage(_:): Project 3D joint back to 2D image coordinates
let wrist2D = try observation.pointInImage(leftWrist)
3D Point Classes
VNPoint3D: Base class with simd_float4x4 position matrix
VNRecognizedPoint3D: Adds identifier (joint name)
VNHumanBodyRecognizedPoint3D: Adds localPosition and parentJoint
// Position relative to skeleton root (center of hip)
let modelPosition = leftWrist.position
// Position relative to parent joint (left elbow)
let relativePosition = leftWrist.localPosition
Depth Input
Vision accepts depth data alongside images:
// From AVDepthData
let handler = VNImageRequestHandler(
cvPixelBuffer: imageBuffer,
depthData: depthData,
orientation: orientation
)
// From file (automatic depth extraction)
let handler = VNImageRequestHandler(url: imageURL) // Depth auto-fetched
Depth formats: Disparity or Depth (interchangeable via AVFoundation)
LiDAR: Use in live capture sessions for accurate scale/measurement
Face Detection & Landmarks
VNDetectFaceRectanglesRequest
Availability: iOS 11+
Detects face bounding boxes:
let request = VNDetectFaceRectanglesRequest()
try handler.perform([request])
for observation in request.results as? [VNFaceObservation] ?? [] {
let faceBounds = observation.boundingBox // Normalized rect
}
VNDetectFaceLandmarksRequest
Availability: iOS 11+
Detects face with detailed landmarks:
let request = VNDetectFaceLandmarksRequest()
try handler.perform([request])
for observation in request.results as? [VNFaceObservation] ?? [] {
if let landmarks = observation.landmarks {
let leftEye = landmarks.leftEye
let nose = landmarks.nose
let leftPupil = landmarks.leftPupil // Revision 2+
}
}
Revisions:
- Revision 1: Basic landmarks
- Revision 2: Detects upside-down faces
- Revision 3+: Pupil locations
Person Detection
VNDetectHumanRectanglesRequest
Availability: iOS 13+
Detects human bounding boxes (torso detection):
let request = VNDetectHumanRectanglesRequest()
try handler.perform([request])
for observation in request.results as? [VNHumanObservation] ?? [] {
let humanBounds = observation.boundingBox // Normalized rect
}
Use case: Faster than pose detection when you only need location
CoreImage Integration
CIBlendWithMask Filter
Composite subject on new background using Vision mask:
// 1. Get mask from Vision
let observation = request.results?.first as? VNInstanceMaskObservation
let visionMask = try observation.createScaledMask(
for: observation.allInstances,
croppedToInstancesContent: false
)
// 2. Convert to CIImage
let maskImage = CIImage(cvPixelBuffer: visionMask)
// 3. Apply filter
let filter = CIFilter(name: "CIBlendWithMask")!
filter.setValue(sourceImage, forKey: kCIInputImageKey)
filter.setValue(maskImage, forKey: kCIInputMaskImageKey)
filter.setValue(newBackground, forKey: kCIInputBackgroundImageKey)
let output = filter.outputImage // Composited result
Parameters:
- Input image: Original image to mask
- Mask image: Vision's soft segmentation mask
- Background image: New background (or empty image for transparency)
HDR preservation: CoreImage preserves high dynamic range from input (Vision/VisionKit output is SDR)
API Quick Reference
Subject Segmentation
| API | Platform | Purpose |
|---|---|---|
VNGenerateForegroundInstanceMaskRequest |
iOS 17+ | Class-agnostic subject instances |
VNGeneratePersonInstanceMaskRequest |
iOS 17+ | Up to 4 people separately |
VNGeneratePersonSegmentationRequest |
iOS 15+ | All people (single mask) |
ImageAnalysisInteraction (VisionKit) |
iOS 16+ | UI for subject lifting |
Pose Detection
| API | Platform | Landmarks | Coordinates |
|---|---|---|---|
VNDetectHumanHandPoseRequest |
iOS 14+ | 21 per hand | 2D normalized |
VNDetectHumanBodyPoseRequest |
iOS 14+ | 18 body joints | 2D normalized |
VNDetectHumanBodyPose3DRequest |
iOS 17+ | 17 body joints | 3D meters |
Face & Person Detection
| API | Platform | Purpose |
|---|---|---|
VNDetectFaceRectanglesRequest |
iOS 11+ | Face bounding boxes |
VNDetectFaceLandmarksRequest |
iOS 11+ | Face with detailed landmarks |
VNDetectHumanRectanglesRequest |
iOS 13+ | Human torso bounding boxes |
Observation Types
| Observation | Returned By |
|---|---|
VNInstanceMaskObservation |
Foreground/person instance masks |
VNPixelBufferObservation |
Person segmentation (single mask) |
VNHumanHandPoseObservation |
Hand pose |
VNHumanBodyPoseObservation |
Body pose (2D) |
VNHumanBodyPose3DObservation |
Body pose (3D) |
VNFaceObservation |
Face detection/landmarks |
VNHumanObservation |
Human rectangles |
Resources
WWDC: 2023-10176, 2023-111241, 2023-10048, 2022-10024, 2020-10653, 2020-10043, 2020-10099
Docs: /vision, /visionkit, /vision/detecting-hand-poses-with-vision
Skills: vision, vision-diag