Claude Code Plugins

Community-maintained marketplace

Feedback

Detect project stack from package manifests (package.json, pyproject.toml, go.mod, Cargo.toml, pubspec.yaml, CMakeLists.txt). Auto-identify frameworks, test tools, and build systems for onboarding.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name library-detection
description Detect project stack from package manifests (package.json, pyproject.toml, go.mod, Cargo.toml, pubspec.yaml, CMakeLists.txt). Auto-identify frameworks, test tools, and build systems for onboarding.

Library Detection Skill

Automatically detect the technology stack of a project by analyzing package manifests and configuration files. Returns structured data for use in onboarding, documentation discovery, and tool configuration.

Variables

Variable Default Description
SCAN_DEPTH 3 Max directory depth to search for manifests
INCLUDE_DEV_DEPS true Include development dependencies in analysis
DETECT_FRAMEWORKS true Identify frameworks from dependencies
DETECT_TEST_TOOLS true Identify test frameworks and runners
OUTPUT_FORMAT json Output format: json, markdown, or toon

Instructions

MANDATORY - Follow the Workflow steps below in order. Do not skip steps.

  1. Scan for package manifests in the project
  2. Parse each manifest to extract dependencies
  3. Classify dependencies into categories
  4. Detect frameworks and test tools from dependency patterns
  5. Output structured stack summary

Red Flags - STOP and Reconsider

If you're about to:

  • Assume a framework without checking imports or config files
  • Skip manifest files because "the project is simple"
  • Hardcode framework versions instead of reading from manifests
  • Report a library without verifying it's actually used

STOP -> Read the manifest files -> Verify with imports/configs -> Then report

Workflow

1. Discover Manifests

Scan for these files (in order of priority):

File Language Parser
package.json JavaScript/TypeScript JSON
pyproject.toml Python TOML
requirements.txt Python Line-based
go.mod Go Go mod
Cargo.toml Rust TOML
pubspec.yaml Dart/Flutter YAML
CMakeLists.txt C/C++ CMake
meson.build C/C++ Meson
WORKSPACE Bazel Bazel
pom.xml Java XML
build.gradle Java/Kotlin Gradle DSL
Gemfile Ruby Ruby DSL
composer.json PHP JSON

Also check for:

  • Dockerfile - containerization
  • docker-compose.yml - container orchestration
  • .github/workflows/*.yml - CI/CD
  • Makefile - build system
  • tsconfig.json - TypeScript config
  • vite.config.* / webpack.config.* - bundlers

2. Parse Dependencies

For each manifest, extract:

  • Production dependencies: runtime requirements
  • Development dependencies: build/test tools
  • Peer dependencies: expected host environment
  • Optional dependencies: feature flags

3. Classify Stack

Group findings into:

{
  "languages": ["typescript", "python", "go", "rust", "dart", "cpp"],
  "frameworks": [
    {"name": "react", "version": "^18.0.0", "category": "frontend"},
    {"name": "fastapi", "version": "^0.100.0", "category": "backend"}
  ],
  "test_frameworks": [
    {"name": "vitest", "version": "^1.0.0"},
    {"name": "pytest", "version": "^7.0.0"}
  ],
  "build_tools": ["vite", "uv", "docker"],
  "databases": ["postgresql", "redis"],
  "cloud_providers": ["aws", "vercel"],
  "ci_cd": ["github-actions"]
}

4. Framework Detection Patterns

Use the cookbook for specific detection logic:

  • Read ./cookbook/manifest-parsing.md for parsing rules
  • Match dependency names against known framework patterns

5. Output

Return the structured stack summary in the requested format.

Cookbook

Manifest Parsing

  • IF: Parsing any package manifest
  • THEN: Read and execute ./cookbook/manifest-parsing.md

Quick Reference

Detection Patterns

Dependency Pattern Detected As
react, react-dom React framework
vue, @vue/* Vue framework
next Next.js framework
fastapi FastAPI framework
django Django framework
flask Flask framework
express Express.js framework
vitest, jest JavaScript test framework
pytest Python test framework
gtest, gmock, catch2 C/C++ test framework
flutter, flutter_test Flutter framework
@testing-library/* Testing utilities

Category Mappings

Category Examples
frontend react, vue, svelte, angular
backend fastapi, django, express, gin
database prisma, sqlalchemy, typeorm
testing vitest, jest, pytest, playwright
build vite, webpack, esbuild, rollup
linting eslint, prettier, ruff, black
typing typescript, mypy, pyright
build-native cmake, meson, bazel

Output Schema

{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "type": "object",
  "properties": {
    "project_root": {"type": "string"},
    "scanned_at": {"type": "string", "format": "date-time"},
    "languages": {
      "type": "array",
      "items": {"type": "string"}
    },
    "frameworks": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "name": {"type": "string"},
          "version": {"type": "string"},
          "category": {"type": "string"}
        }
      }
    },
    "test_frameworks": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "name": {"type": "string"},
          "version": {"type": "string"}
        }
      }
    },
    "build_tools": {
      "type": "array",
      "items": {"type": "string"}
    },
    "databases": {
      "type": "array",
      "items": {"type": "string"}
    },
    "cloud_providers": {
      "type": "array",
      "items": {"type": "string"}
    },
    "ci_cd": {
      "type": "array",
      "items": {"type": "string"}
    },
    "manifests_found": {
      "type": "array",
      "items": {"type": "string"}
    }
  }
}

Integration

Other skills and commands can use this skill for:

  1. Documentation discovery: Map detected frameworks to doc sources
  2. Onboarding: Generate quickstart guides tailored to the stack
  3. Tool configuration: Auto-configure linters, formatters, test runners
  4. Agent routing: Select appropriate AI providers based on stack

Example usage in another skill:

## Prerequisites

Before implementing, run the `library-detection` skill to identify:
- Test frameworks (for writing tests)
- Build tools (for verification)
- Database libraries (for data layer work)