Claude Code Plugins

Community-maintained marketplace

Feedback

Fetch current model names from AI providers (Anthropic, OpenAI, Gemini, Ollama), classify them into tiers (fast/default/heavy), and detect new models. Use when needing up-to-date model IDs for API calls or when other skills reference model names.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name model-discovery
description Fetch current model names from AI providers (Anthropic, OpenAI, Gemini, Ollama), classify them into tiers (fast/default/heavy), and detect new models. Use when needing up-to-date model IDs for API calls or when other skills reference model names.

Model Discovery Skill

Fetch the most recent model names from AI providers using their APIs. Includes tier classification (fast/default/heavy) for routing decisions and automatic detection of new models.

Variables

Variable Default Description
CACHE_TTL_HOURS 24 How long to cache model lists before refreshing
ENABLED_ANTHROPIC true Fetch Claude models from Anthropic API
ENABLED_OPENAI true Fetch GPT models from OpenAI API
ENABLED_GEMINI true Fetch Gemini models from Google API
ENABLED_OLLAMA true Fetch local models from Ollama
OLLAMA_HOST http://localhost:11434 Ollama API endpoint
AUTO_CLASSIFY true Auto-classify new models using pattern matching

Instructions

MANDATORY - Follow the Workflow steps below in order. Do not skip steps.

  • Before referencing model names in any skill, check if fresh data exists
  • Use tier mappings to select appropriate models (fast for speed, heavy for capability)
  • Check for new models periodically and classify them

Red Flags - STOP and Reconsider

If you're about to:

  • Hardcode a model version like gpt-5.2 or claude-sonnet-4-5
  • Use model names from memory without checking current availability
  • Call APIs without checking if API keys are configured
  • Skip new model classification when prompted

STOP -> Read the appropriate cookbook file -> Use the fetch script

Workflow

Fetching Models

  1. Determine which provider(s) you need models from
  2. Check if cached model list exists: cache/models.json
  3. If cache is fresh (< CACHE_TTL_HOURS old), use cached data
  4. If stale/missing, run: uv run python scripts/fetch_models.py --force
  5. CHECKPOINT: Verify no API errors in output
  6. Use the model IDs as needed

Checking for New Models

  1. Run: uv run python scripts/check_new_models.py --json
  2. If new models found, review the output
  3. For auto-classification: uv run python scripts/check_new_models.py --auto
  4. For interactive classification: uv run python scripts/check_new_models.py
  5. CHECKPOINT: All models assigned to tiers (fast/default/heavy)

Getting Tier Recommendations

  1. Read: config/model_tiers.json for current tier mappings
  2. Use the appropriate model for task complexity:
    • fast: Simple tasks, high throughput, cost-sensitive
    • default: General purpose, balanced
    • heavy: Complex reasoning, research, difficult tasks

Model Tier Reference

Anthropic Claude

Tier Model CLI Name
fast claude-haiku-4-5 haiku
default claude-sonnet-4-5 sonnet
heavy claude-opus-4-5 opus

OpenAI

Tier Model Notes
fast gpt-5.2-mini Speed optimized
default gpt-5.2 Balanced flagship
heavy gpt-5.2-pro Maximum capability

Codex (for coding):

Tier Model
fast gpt-5.2-codex-mini
default gpt-5.2-codex
heavy gpt-5.2-codex-max

Google Gemini

Tier Model Context
fast gemini-3-flash-lite See API output
default gemini-3-pro See API output
heavy gemini-3-deep-think See API output

Ollama (Local)

Tier Suggested Model Notes
fast phi3.5:latest Small; fast
default llama3.2:latest Balanced
heavy llama3.3:70b Large; requires GPU

CLI Mappings (for spawn:agent skill)

CLI Tool Fast Default Heavy
claude-code haiku sonnet opus
codex-cli gpt-5.2-codex-mini gpt-5.2-codex gpt-5.2-codex-max
gemini-cli gemini-3-flash-lite gemini-3-pro gemini-3-deep-think
cursor-cli gpt-5.2 sonnet-4.5 sonnet-4.5-thinking
opencode-cli anthropic/claude-haiku-4-5 anthropic/claude-sonnet-4-5 anthropic/claude-opus-4-5
copilot-cli claude-sonnet-4.5 claude-sonnet-4.5 claude-sonnet-4.5

Quick Reference

Scripts

# Fetch all models (uses cache if fresh)
uv run python scripts/fetch_models.py

# Force refresh from APIs
uv run python scripts/fetch_models.py --force

# Fetch and check for new models
uv run python scripts/fetch_models.py --force --check-new

# Check for new unclassified models (JSON output for agents)
uv run python scripts/check_new_models.py --json

# Auto-classify new models using patterns
uv run python scripts/check_new_models.py --auto

# Interactive classification
uv run python scripts/check_new_models.py

Config Files

File Purpose
config/model_tiers.json Static tier mappings and CLI model names
config/known_models.json Registry of all classified models with timestamps
cache/models.json Cached API responses

API Endpoints

Provider Endpoint Auth
Anthropic GET /v1/models x-api-key header
OpenAI GET /v1/models Bearer token
Gemini GET /v1beta/models ?key= param
Ollama GET /api/tags None

Output Examples

Fetch Models Output

{
  "fetched_at": "2025-12-17T05:53:25Z",
  "providers": {
    "anthropic": [{"id": "claude-opus-4-5", "name": "Claude Opus 4.5"}],
    "openai": [{"id": "gpt-5.2", "name": "gpt-5.2"}],
    "gemini": [{"id": "models/gemini-3-pro", "name": "Gemini 3 Pro"}],
    "ollama": [{"id": "phi3.5:latest", "name": "phi3.5:latest"}]
  }
}

Check New Models Output (--json)

{
  "timestamp": "2025-12-17T06:00:00Z",
  "has_new_models": true,
  "total_new": 2,
  "by_provider": {
    "openai": {
      "count": 2,
      "models": [
        {"id": "gpt-5.2-mini", "inferred_tier": "fast", "needs_classification": false},
        {"id": "gpt-5.2-pro", "inferred_tier": "heavy", "needs_classification": false}
      ]
    }
  }
}

Integration

Other skills should reference this skill for model names:

## Model Names

For current model names and tiers, use the `model-discovery` skill:
- Tiers: Read `config/model_tiers.json`
- Fresh data: Run `uv run python scripts/fetch_models.py`
- New models: Run `uv run python scripts/check_new_models.py --json`

**Do not hardcode model version numbers** - they become stale quickly.

New Model Detection

When new models are detected:

  1. The script will report them with suggested tiers based on naming patterns
  2. Models matching these patterns are auto-classified:
    • heavy: -pro, -opus, -max, thinking, deep-research
    • fast: -mini, -nano, -flash, -lite, -haiku
    • default: Base model names without modifiers
  3. Models not matching patterns require manual classification
  4. Specialty models (TTS, audio, transcribe) are auto-excluded

Agent Query for New Models

When checking for new models programmatically:

# Returns exit code 1 if new models need attention
uv run python scripts/check_new_models.py --json

# Example agent workflow
if ! uv run python scripts/check_new_models.py --json > /tmp/new_models.json 2>&1; then
    echo "New models detected - review /tmp/new_models.json"
fi