Claude Code Plugins

Community-maintained marketplace

Feedback
9
0

Validate data against schemas, business rules, and data quality standards.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-validator
description Validate data against schemas, business rules, and data quality standards.

Data Validator Skill

Validate data against schemas, business rules, and data quality standards.

Instructions

You are a data validation expert. When invoked:

  1. Schema Validation:

    • Validate against JSON Schema
    • Check database schema compliance
    • Validate API request/response formats
    • Ensure data type correctness
    • Verify required fields
  2. Business Rules Validation:

    • Apply domain-specific rules
    • Validate data ranges and constraints
    • Check referential integrity
    • Verify business logic constraints
    • Validate calculated fields
  3. Data Quality Checks:

    • Check for completeness
    • Detect duplicates
    • Identify outliers and anomalies
    • Validate format patterns (email, phone, etc.)
    • Check data consistency
  4. Generate Validation Reports:

    • Detailed error messages
    • Validation statistics
    • Data quality scores
    • Fix suggestions
    • Compliance summaries

Usage Examples

@data-validator data.json --schema schema.json
@data-validator --check-duplicates
@data-validator --rules business-rules.yaml
@data-validator --quality-report
@data-validator --fix-errors

Schema Validation

JSON Schema Validation

Python (jsonschema)

from jsonschema import validate, ValidationError, Draft7Validator
import json

def validate_json_schema(data, schema):
    """
    Validate data against JSON Schema
    """
    try:
        validate(instance=data, schema=schema)
        return {
            'valid': True,
            'errors': []
        }
    except ValidationError as e:
        return {
            'valid': False,
            'errors': [{
                'path': list(e.path),
                'message': e.message,
                'validator': e.validator,
                'validator_value': e.validator_value
            }]
        }

def validate_with_detailed_errors(data, schema):
    """
    Validate and collect all errors
    """
    validator = Draft7Validator(schema)
    errors = []

    for error in validator.iter_errors(data):
        errors.append({
            'path': '.'.join(str(p) for p in error.path),
            'message': error.message,
            'validator': error.validator,
            'failed_value': error.instance
        })

    return {
        'valid': len(errors) == 0,
        'errors': errors,
        'error_count': len(errors)
    }

# Example schema
user_schema = {
    "type": "object",
    "properties": {
        "id": {
            "type": "integer",
            "minimum": 1
        },
        "email": {
            "type": "string",
            "format": "email",
            "pattern": "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
        },
        "age": {
            "type": "integer",
            "minimum": 0,
            "maximum": 150
        },
        "phone": {
            "type": "string",
            "pattern": "^\\+?[1-9]\\d{1,14}$"
        },
        "status": {
            "type": "string",
            "enum": ["active", "inactive", "suspended"]
        },
        "created_at": {
            "type": "string",
            "format": "date-time"
        },
        "tags": {
            "type": "array",
            "items": {"type": "string"},
            "minItems": 1,
            "uniqueItems": True
        },
        "address": {
            "type": "object",
            "properties": {
                "street": {"type": "string"},
                "city": {"type": "string"},
                "zip": {"type": "string", "pattern": "^\\d{5}(-\\d{4})?$"}
            },
            "required": ["street", "city"]
        }
    },
    "required": ["id", "email", "status"],
    "additionalProperties": False
}

# Validate data
user_data = {
    "id": 1,
    "email": "user@example.com",
    "age": 30,
    "status": "active",
    "tags": ["developer", "admin"]
}

result = validate_with_detailed_errors(user_data, user_schema)

if result['valid']:
    print("✅ Data is valid")
else:
    print(f"❌ Found {result['error_count']} errors:")
    for error in result['errors']:
        print(f"  - {error['path']}: {error['message']}")

JavaScript (AJV)

const Ajv = require('ajv');
const addFormats = require('ajv-formats');

const ajv = new Ajv({ allErrors: true });
addFormats(ajv);

const schema = {
  type: 'object',
  properties: {
    id: { type: 'integer', minimum: 1 },
    email: { type: 'string', format: 'email' },
    age: { type: 'integer', minimum: 0, maximum: 150 },
    status: { type: 'string', enum: ['active', 'inactive', 'suspended'] }
  },
  required: ['id', 'email', 'status'],
  additionalProperties: false
};

function validateData(data) {
  const validate = ajv.compile(schema);
  const valid = validate(data);

  return {
    valid,
    errors: validate.errors || []
  };
}

// Usage
const userData = {
  id: 1,
  email: 'user@example.com',
  status: 'active'
};

const result = validateData(userData);
console.log(result);

Database Schema Validation

import pandas as pd
from sqlalchemy import inspect

def validate_dataframe_schema(df, expected_schema):
    """
    Validate DataFrame against expected schema

    expected_schema = {
        'column_name': {
            'type': 'int64',
            'nullable': False,
            'unique': False,
            'min': 0,
            'max': 100
        }
    }
    """
    errors = []

    # Check columns exist
    expected_columns = set(expected_schema.keys())
    actual_columns = set(df.columns)

    missing_columns = expected_columns - actual_columns
    extra_columns = actual_columns - expected_columns

    if missing_columns:
        errors.append({
            'type': 'missing_columns',
            'columns': list(missing_columns)
        })

    if extra_columns:
        errors.append({
            'type': 'extra_columns',
            'columns': list(extra_columns)
        })

    # Validate each column
    for col_name, col_schema in expected_schema.items():
        if col_name not in df.columns:
            continue

        col = df[col_name]

        # Check data type
        expected_type = col_schema.get('type')
        if expected_type and str(col.dtype) != expected_type:
            errors.append({
                'type': 'wrong_type',
                'column': col_name,
                'expected': expected_type,
                'actual': str(col.dtype)
            })

        # Check nullable
        if not col_schema.get('nullable', True):
            null_count = col.isnull().sum()
            if null_count > 0:
                errors.append({
                    'type': 'null_values',
                    'column': col_name,
                    'count': int(null_count)
                })

        # Check unique
        if col_schema.get('unique', False):
            dup_count = col.duplicated().sum()
            if dup_count > 0:
                errors.append({
                    'type': 'duplicate_values',
                    'column': col_name,
                    'count': int(dup_count)
                })

        # Check range
        if 'min' in col_schema and pd.api.types.is_numeric_dtype(col):
            min_val = col.min()
            if min_val < col_schema['min']:
                errors.append({
                    'type': 'below_minimum',
                    'column': col_name,
                    'min_allowed': col_schema['min'],
                    'min_found': float(min_val)
                })

        if 'max' in col_schema and pd.api.types.is_numeric_dtype(col):
            max_val = col.max()
            if max_val > col_schema['max']:
                errors.append({
                    'type': 'above_maximum',
                    'column': col_name,
                    'max_allowed': col_schema['max'],
                    'max_found': float(max_val)
                })

        # Check pattern
        if 'pattern' in col_schema and col.dtype == 'object':
            import re
            pattern = re.compile(col_schema['pattern'])
            invalid = ~col.dropna().astype(str).str.match(pattern)
            invalid_count = invalid.sum()

            if invalid_count > 0:
                errors.append({
                    'type': 'pattern_mismatch',
                    'column': col_name,
                    'pattern': col_schema['pattern'],
                    'count': int(invalid_count)
                })

    return {
        'valid': len(errors) == 0,
        'errors': errors
    }

# Example usage
expected_schema = {
    'user_id': {
        'type': 'int64',
        'nullable': False,
        'unique': True,
        'min': 1
    },
    'email': {
        'type': 'object',
        'nullable': False,
        'pattern': r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
    },
    'age': {
        'type': 'int64',
        'nullable': True,
        'min': 0,
        'max': 150
    },
    'score': {
        'type': 'float64',
        'nullable': False,
        'min': 0.0,
        'max': 100.0
    }
}

df = pd.DataFrame({
    'user_id': [1, 2, 3],
    'email': ['user1@example.com', 'user2@example.com', 'invalid'],
    'age': [25, 30, 200],
    'score': [85.5, 92.0, 78.5]
})

result = validate_dataframe_schema(df, expected_schema)

Business Rules Validation

class DataValidator:
    """
    Flexible data validator with custom rules
    """

    def __init__(self):
        self.rules = []
        self.errors = []

    def add_rule(self, name, validator_func, error_message):
        """
        Add validation rule

        validator_func: function that takes data and returns bool
        """
        self.rules.append({
            'name': name,
            'validator': validator_func,
            'error_message': error_message
        })

    def validate(self, data):
        """Validate data against all rules"""
        self.errors = []

        for rule in self.rules:
            try:
                is_valid = rule['validator'](data)
                if not is_valid:
                    self.errors.append({
                        'rule': rule['name'],
                        'message': rule['error_message']
                    })
            except Exception as e:
                self.errors.append({
                    'rule': rule['name'],
                    'message': f"Validation error: {str(e)}"
                })

        return {
            'valid': len(self.errors) == 0,
            'errors': self.errors
        }

# Example: E-commerce order validation
validator = DataValidator()

# Rule: Order total must match sum of line items
validator.add_rule(
    'order_total_matches',
    lambda data: abs(data['total'] - sum(item['price'] * item['quantity']
                                         for item in data['items'])) < 0.01,
    "Order total does not match sum of line items"
)

# Rule: Shipping address required for physical items
validator.add_rule(
    'shipping_address_required',
    lambda data: not any(item['type'] == 'physical' for item in data['items'])
                 or 'shipping_address' in data,
    "Shipping address required for physical items"
)

# Rule: Discount cannot exceed order subtotal
validator.add_rule(
    'discount_valid',
    lambda data: data.get('discount', 0) <= data.get('subtotal', 0),
    "Discount cannot exceed order subtotal"
)

# Rule: Email required for digital items
validator.add_rule(
    'email_for_digital',
    lambda data: not any(item['type'] == 'digital' for item in data['items'])
                 or ('email' in data and '@' in data['email']),
    "Valid email required for digital items"
)

# Validate order
order = {
    'total': 150.00,
    'subtotal': 150.00,
    'discount': 10.00,
    'items': [
        {'name': 'Product A', 'type': 'physical', 'price': 50.00, 'quantity': 2},
        {'name': 'Product B', 'type': 'digital', 'price': 50.00, 'quantity': 1}
    ],
    'email': 'user@example.com'
}

result = validator.validate(order)

if not result['valid']:
    for error in result['errors']:
        print(f"❌ {error['rule']}: {error['message']}")

Complex Business Rules

def validate_user_registration(data):
    """
    Comprehensive user registration validation
    """
    errors = []

    # Required fields
    required = ['username', 'email', 'password', 'terms_accepted']
    for field in required:
        if field not in data or not data[field]:
            errors.append(f"Field '{field}' is required")

    # Username validation
    if 'username' in data:
        username = data['username']

        if len(username) < 3:
            errors.append("Username must be at least 3 characters")

        if len(username) > 20:
            errors.append("Username must not exceed 20 characters")

        if not username.isalnum():
            errors.append("Username must contain only letters and numbers")

    # Email validation
    if 'email' in data:
        import re
        email_pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
        if not re.match(email_pattern, data['email']):
            errors.append("Invalid email format")

    # Password validation
    if 'password' in data:
        password = data['password']

        if len(password) < 8:
            errors.append("Password must be at least 8 characters")

        if not any(c.isupper() for c in password):
            errors.append("Password must contain at least one uppercase letter")

        if not any(c.islower() for c in password):
            errors.append("Password must contain at least one lowercase letter")

        if not any(c.isdigit() for c in password):
            errors.append("Password must contain at least one digit")

        if not any(c in '!@#$%^&*()_+-=' for c in password):
            errors.append("Password must contain at least one special character")

    # Password confirmation
    if 'password' in data and 'password_confirm' in data:
        if data['password'] != data['password_confirm']:
            errors.append("Passwords do not match")

    # Age validation
    if 'birthdate' in data:
        from datetime import datetime
        try:
            birthdate = datetime.fromisoformat(data['birthdate'])
            age = (datetime.now() - birthdate).days / 365.25

            if age < 13:
                errors.append("Must be at least 13 years old")

            if age > 150:
                errors.append("Invalid birthdate")
        except:
            errors.append("Invalid birthdate format")

    # Terms acceptance
    if not data.get('terms_accepted'):
        errors.append("Must accept terms and conditions")

    return {
        'valid': len(errors) == 0,
        'errors': errors
    }

Data Quality Validation

Completeness Check

def check_completeness(df):
    """
    Check data completeness
    """
    report = {
        'total_cells': len(df) * len(df.columns),
        'total_rows': len(df),
        'total_columns': len(df.columns),
        'columns': {}
    }

    for col in df.columns:
        null_count = df[col].isnull().sum()
        completeness = (1 - null_count / len(df)) * 100

        report['columns'][col] = {
            'total': len(df),
            'null_count': int(null_count),
            'non_null_count': int(len(df) - null_count),
            'completeness_percent': round(completeness, 2)
        }

    # Overall completeness
    total_nulls = df.isnull().sum().sum()
    report['overall_completeness'] = round(
        (1 - total_nulls / report['total_cells']) * 100,
        2
    )

    return report

def check_duplicates(df, subset=None):
    """
    Check for duplicate rows
    """
    dup_mask = df.duplicated(subset=subset, keep=False)
    duplicates = df[dup_mask]

    return {
        'has_duplicates': dup_mask.any(),
        'duplicate_count': int(dup_mask.sum()),
        'duplicate_percent': round(dup_mask.sum() / len(df) * 100, 2),
        'duplicate_rows': duplicates.to_dict('records') if len(duplicates) < 100 else []
    }

def check_outliers(df, column, method='iqr'):
    """
    Detect outliers in numeric column
    """
    if method == 'iqr':
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1

        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR

        outliers = df[(df[column] < lower_bound) | (df[column] > upper_bound)]

    elif method == 'zscore':
        from scipy import stats
        z_scores = np.abs(stats.zscore(df[column].dropna()))
        outliers = df[z_scores > 3]

    return {
        'method': method,
        'lower_bound': float(lower_bound) if method == 'iqr' else None,
        'upper_bound': float(upper_bound) if method == 'iqr' else None,
        'outlier_count': len(outliers),
        'outlier_percent': round(len(outliers) / len(df) * 100, 2),
        'outliers': outliers[column].tolist()[:100]  # Limit to 100
    }

Format Validation

import re

def validate_email(email):
    """Validate email format"""
    pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
    return bool(re.match(pattern, email))

def validate_phone(phone, country='US'):
    """Validate phone number"""
    patterns = {
        'US': r'^\+?1?\d{10}$',
        'UK': r'^\+?44\d{10}$',
        'international': r'^\+?[1-9]\d{1,14}$'
    }

    phone_clean = re.sub(r'[^\d+]', '', phone)
    pattern = patterns.get(country, patterns['international'])

    return bool(re.match(pattern, phone_clean))

def validate_url(url):
    """Validate URL format"""
    pattern = r'^https?://[a-zA-Z0-9-._~:/?#\[\]@!$&\'()*+,;=]+$'
    return bool(re.match(pattern, url))

def validate_date(date_string, format='%Y-%m-%d'):
    """Validate date format"""
    from datetime import datetime

    try:
        datetime.strptime(date_string, format)
        return True
    except:
        return False

def validate_credit_card(card_number):
    """Validate credit card using Luhn algorithm"""
    card_number = re.sub(r'[\s-]', '', card_number)

    if not card_number.isdigit():
        return False

    if len(card_number) < 13 or len(card_number) > 19:
        return False

    # Luhn algorithm
    def luhn_checksum(card_num):
        def digits_of(n):
            return [int(d) for d in str(n)]

        digits = digits_of(card_num)
        odd_digits = digits[-1::-2]
        even_digits = digits[-2::-2]

        checksum = sum(odd_digits)
        for d in even_digits:
            checksum += sum(digits_of(d * 2))

        return checksum % 10

    return luhn_checksum(card_number) == 0

def validate_formats_in_dataframe(df):
    """
    Validate common formats in DataFrame
    """
    results = {}

    for col in df.columns:
        col_lower = col.lower()

        # Email validation
        if 'email' in col_lower:
            invalid = df[~df[col].apply(validate_email)]
            results[col] = {
                'type': 'email',
                'valid_count': len(df) - len(invalid),
                'invalid_count': len(invalid),
                'invalid_samples': invalid[col].head(5).tolist()
            }

        # Phone validation
        elif 'phone' in col_lower:
            invalid = df[~df[col].apply(validate_phone)]
            results[col] = {
                'type': 'phone',
                'valid_count': len(df) - len(invalid),
                'invalid_count': len(invalid),
                'invalid_samples': invalid[col].head(5).tolist()
            }

        # URL validation
        elif 'url' in col_lower or 'link' in col_lower:
            invalid = df[~df[col].apply(validate_url)]
            results[col] = {
                'type': 'url',
                'valid_count': len(df) - len(invalid),
                'invalid_count': len(invalid),
                'invalid_samples': invalid[col].head(5).tolist()
            }

    return results

Validation Report Generation

def generate_validation_report(df, schema=None, business_rules=None):
    """
    Generate comprehensive validation report
    """
    from datetime import datetime

    report = f"""# Data Validation Report
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
**Dataset:** {len(df):,} rows × {len(df.columns)} columns

---

## Summary

"""

    # Completeness check
    completeness = check_completeness(df)
    report += f"- **Overall Completeness:** {completeness['overall_completeness']}%\n"

    # Duplicates check
    duplicates = check_duplicates(df)
    report += f"- **Duplicate Rows:** {duplicates['duplicate_count']:,} ({duplicates['duplicate_percent']}%)\n"

    # Schema validation
    if schema:
        schema_result = validate_dataframe_schema(df, schema)
        status = "✅ Pass" if schema_result['valid'] else f"❌ Fail ({len(schema_result['errors'])} errors)"
        report += f"- **Schema Validation:** {status}\n"

    report += "\n---\n\n## Completeness Analysis\n\n"

    report += "| Column | Non-Null | Null Count | Completeness |\n"
    report += "|--------|----------|------------|-------------|\n"

    for col, stats in completeness['columns'].items():
        report += f"| {col} | {stats['non_null_count']:,} | {stats['null_count']:,} | {stats['completeness_percent']}% |\n"

    # Schema validation details
    if schema and not schema_result['valid']:
        report += "\n---\n\n## Schema Validation Errors\n\n"

        for error in schema_result['errors']:
            report += f"### {error['type'].replace('_', ' ').title()}\n\n"

            if error['type'] == 'wrong_type':
                report += f"- **Column:** {error['column']}\n"
                report += f"- **Expected:** {error['expected']}\n"
                report += f"- **Actual:** {error['actual']}\n\n"

            elif error['type'] in ['null_values', 'duplicate_values']:
                report += f"- **Column:** {error['column']}\n"
                report += f"- **Count:** {error['count']:,}\n\n"

            elif error['type'] == 'pattern_mismatch':
                report += f"- **Column:** {error['column']}\n"
                report += f"- **Pattern:** `{error['pattern']}`\n"
                report += f"- **Invalid Count:** {error['count']:,}\n\n"

    # Format validation
    format_results = validate_formats_in_dataframe(df)

    if format_results:
        report += "\n---\n\n## Format Validation\n\n"

        for col, result in format_results.items():
            report += f"### {col} ({result['type']})\n\n"
            report += f"- **Valid:** {result['valid_count']:,}\n"
            report += f"- **Invalid:** {result['invalid_count']:,}\n"

            if result['invalid_samples']:
                report += f"\n**Invalid Samples:**\n"
                for sample in result['invalid_samples']:
                    report += f"- `{sample}`\n"

            report += "\n"

    # Data quality score
    quality_score = calculate_quality_score(df, schema, duplicates, completeness)

    report += f"\n---\n\n## Data Quality Score\n\n"
    report += f"### Overall Score: {quality_score['overall']}/100\n\n"

    for dimension, score in quality_score['dimensions'].items():
        report += f"- **{dimension}:** {score}/100\n"

    return report

def calculate_quality_score(df, schema, duplicates, completeness):
    """Calculate data quality score"""

    scores = {}

    # Completeness score
    scores['Completeness'] = completeness['overall_completeness']

    # Uniqueness score
    scores['Uniqueness'] = 100 - duplicates['duplicate_percent']

    # Validity score (if schema provided)
    if schema:
        schema_result = validate_dataframe_schema(df, schema)
        error_rate = len(schema_result['errors']) / (len(df) * len(df.columns))
        scores['Validity'] = max(0, 100 - (error_rate * 100))
    else:
        scores['Validity'] = 100

    # Overall score
    overall = sum(scores.values()) / len(scores)

    return {
        'overall': round(overall, 1),
        'dimensions': {k: round(v, 1) for k, v in scores.items()}
    }

Best Practices

  1. Define clear validation rules before implementation
  2. Validate early in the data pipeline
  3. Provide detailed error messages for debugging
  4. Use schema validation for API contracts
  5. Implement business rule validation separately from schema
  6. Log validation failures for monitoring
  7. Generate validation reports for auditing
  8. Handle validation errors gracefully
  9. Test validation rules with edge cases
  10. Version control validation schemas and rules

Common Validation Patterns

API Request Validation

def validate_api_request(request_data, endpoint):
    """Validate API request data"""

    schemas = {
        '/users': user_schema,
        '/orders': order_schema,
        '/products': product_schema
    }

    schema = schemas.get(endpoint)
    if not schema:
        return {'valid': False, 'error': 'Unknown endpoint'}

    return validate_json_schema(request_data, schema)

Batch Data Validation

def validate_batch(records, validator):
    """Validate batch of records"""

    results = []

    for i, record in enumerate(records):
        result = validator.validate(record)
        result['record_index'] = i

        if not result['valid']:
            results.append(result)

    return {
        'total_records': len(records),
        'valid_records': len(records) - len(results),
        'invalid_records': len(results),
        'failures': results
    }

Notes

  • Always validate at system boundaries
  • Use appropriate validation levels (syntax, semantic, business)
  • Cache validation results for performance
  • Provide clear error messages for users
  • Log validation metrics for monitoring
  • Consider validation performance for large datasets
  • Use streaming validation for big data
  • Keep validation rules maintainable and testable