Claude Code Plugins

Community-maintained marketplace

Feedback

json-transformer

@CuriousLearner/devkit
9
0

Transform, manipulate, and analyze JSON data structures with advanced operations.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name json-transformer
description Transform, manipulate, and analyze JSON data structures with advanced operations.

JSON Transformer Skill

Transform, manipulate, and analyze JSON data structures with advanced operations.

Instructions

You are a JSON transformation expert. When invoked:

  1. Parse and Validate JSON:

    • Parse JSON from files, strings, or APIs
    • Validate JSON structure and schema
    • Handle malformed JSON gracefully
    • Pretty-print and format JSON
    • Detect and fix common JSON issues
  2. Transform Data Structures:

    • Reshape nested objects and arrays
    • Flatten and unflatten structures
    • Extract specific paths (JSONPath, JMESPath)
    • Merge and combine JSON documents
    • Filter and map data
  3. Advanced Operations:

    • Convert between JSON and other formats (CSV, YAML, XML)
    • Apply transformations (jq-style operations)
    • Query and search JSON data
    • Diff and compare JSON documents
    • Generate JSON from schemas
  4. Data Manipulation:

    • Add, update, delete properties
    • Rename keys
    • Convert data types
    • Sort and deduplicate
    • Calculate aggregate values

Usage Examples

@json-transformer data.json
@json-transformer --flatten
@json-transformer --path "users[*].email"
@json-transformer --merge file1.json file2.json
@json-transformer --to-csv data.json
@json-transformer --validate schema.json

Basic JSON Operations

Parsing and Writing

Python

import json

# Parse JSON string
data = json.loads('{"name": "John", "age": 30}')

# Parse from file
with open('data.json', 'r') as f:
    data = json.load(f)

# Write JSON to file
with open('output.json', 'w') as f:
    json.dump(data, f, indent=2)

# Pretty print
print(json.dumps(data, indent=2, sort_keys=True))

# Compact output
compact = json.dumps(data, separators=(',', ':'))

# Handle special types
from datetime import datetime
import decimal

def json_encoder(obj):
    if isinstance(obj, datetime):
        return obj.isoformat()
    if isinstance(obj, decimal.Decimal):
        return float(obj)
    raise TypeError(f"Type {type(obj)} not serializable")

json.dumps(data, default=json_encoder)

JavaScript

// Parse JSON string
const data = JSON.parse('{"name": "John", "age": 30}');

// Parse from file (Node.js)
const fs = require('fs');
const data = JSON.parse(fs.readFileSync('data.json', 'utf8'));

// Write JSON to file
fs.writeFileSync('output.json', JSON.stringify(data, null, 2));

// Pretty print
console.log(JSON.stringify(data, null, 2));

// Custom serialization
const json = JSON.stringify(data, (key, value) => {
  if (value instanceof Date) {
    return value.toISOString();
  }
  return value;
}, 2);

jq (Command Line)

# Pretty print
cat data.json | jq '.'

# Compact output
cat data.json | jq -c '.'

# Sort keys
cat data.json | jq -S '.'

# Read from file, write to file
jq '.' input.json > output.json

Validation

Python (jsonschema)

from jsonschema import validate, ValidationError

# Define schema
schema = {
    "type": "object",
    "properties": {
        "name": {"type": "string"},
        "age": {"type": "number", "minimum": 0},
        "email": {"type": "string", "format": "email"}
    },
    "required": ["name", "email"]
}

# Validate data
data = {"name": "John", "email": "john@example.com", "age": 30}

try:
    validate(instance=data, schema=schema)
    print("Valid JSON")
except ValidationError as e:
    print(f"Invalid: {e.message}")

# Validate against JSON Schema draft
from jsonschema import Draft7Validator

validator = Draft7Validator(schema)
errors = list(validator.iter_errors(data))
for error in errors:
    print(f"Error at {'.'.join(str(p) for p in error.path)}: {error.message}")

JavaScript (ajv)

const Ajv = require('ajv');
const ajv = new Ajv();

const schema = {
  type: 'object',
  properties: {
    name: { type: 'string' },
    age: { type: 'number', minimum: 0 },
    email: { type: 'string', format: 'email' }
  },
  required: ['name', 'email']
};

const validate = ajv.compile(schema);

const data = { name: 'John', email: 'john@example.com', age: 30 };

if (validate(data)) {
  console.log('Valid JSON');
} else {
  console.log('Invalid:', validate.errors);
}

Data Extraction and Querying

JSONPath Queries

Python (jsonpath-ng)

from jsonpath_ng import jsonpath, parse

data = {
    "users": [
        {"name": "John", "age": 30, "email": "john@example.com"},
        {"name": "Jane", "age": 25, "email": "jane@example.com"}
    ]
}

# Extract all user names
jsonpath_expr = parse('users[*].name')
names = [match.value for match in jsonpath_expr.find(data)]
# Result: ['John', 'Jane']

# Extract emails of users over 25
jsonpath_expr = parse('users[?(@.age > 25)].email')
emails = [match.value for match in jsonpath_expr.find(data)]

# Nested extraction
data = {
    "company": {
        "departments": [
            {
                "name": "Engineering",
                "employees": [
                    {"name": "Alice", "salary": 100000},
                    {"name": "Bob", "salary": 90000}
                ]
            }
        ]
    }
}

jsonpath_expr = parse('company.departments[*].employees[*].name')
names = [match.value for match in jsonpath_expr.find(data)]

jq

# Extract field
echo '{"name": "John", "age": 30}' | jq '.name'

# Extract from array
echo '[{"name": "John"}, {"name": "Jane"}]' | jq '.[].name'

# Filter array
echo '[{"name": "John", "age": 30}, {"name": "Jane", "age": 25}]' | \
  jq '.[] | select(.age > 25)'

# Extract nested fields
cat data.json | jq '.users[].email'

# Multiple fields
cat data.json | jq '.users[] | {name: .name, email: .email}'

# Conditional extraction
cat data.json | jq '.users[] | select(.age > 25) | .email'

JMESPath Queries

Python (jmespath)

import jmespath

data = {
    "users": [
        {"name": "John", "age": 30, "tags": ["admin", "developer"]},
        {"name": "Jane", "age": 25, "tags": ["developer"]},
        {"name": "Bob", "age": 35, "tags": ["manager"]}
    ]
}

# Simple extraction
names = jmespath.search('users[*].name', data)
# Result: ['John', 'Jane', 'Bob']

# Filtering
admins = jmespath.search('users[?contains(tags, `admin`)]', data)

# Multiple conditions
senior_devs = jmespath.search(
    'users[?age > `28` && contains(tags, `developer`)]',
    data
)

# Projections
result = jmespath.search('users[*].{name: name, age: age}', data)

# Nested queries
data = {
    "departments": [
        {
            "name": "Engineering",
            "employees": [
                {"name": "Alice", "skills": ["Python", "Go"]},
                {"name": "Bob", "skills": ["JavaScript", "Python"]}
            ]
        }
    ]
}

python_devs = jmespath.search(
    'departments[*].employees[?contains(skills, `Python`)].name',
    data
)

Data Transformation

Flattening Nested JSON

Python

def flatten_json(nested_json, parent_key='', sep='.'):
    """
    Flatten nested JSON structure
    """
    items = []

    for key, value in nested_json.items():
        new_key = f"{parent_key}{sep}{key}" if parent_key else key

        if isinstance(value, dict):
            items.extend(flatten_json(value, new_key, sep=sep).items())
        elif isinstance(value, list):
            for i, item in enumerate(value):
                if isinstance(item, dict):
                    items.extend(flatten_json(item, f"{new_key}[{i}]", sep=sep).items())
                else:
                    items.append((f"{new_key}[{i}]", item))
        else:
            items.append((new_key, value))

    return dict(items)

# Example
nested = {
    "user": {
        "name": "John",
        "address": {
            "city": "New York",
            "zip": "10001"
        },
        "tags": ["admin", "developer"]
    }
}

flat = flatten_json(nested)
# Result: {
#     'user.name': 'John',
#     'user.address.city': 'New York',
#     'user.address.zip': '10001',
#     'user.tags[0]': 'admin',
#     'user.tags[1]': 'developer'
# }

JavaScript

function flattenJSON(obj, prefix = '', result = {}) {
  for (const [key, value] of Object.entries(obj)) {
    const newKey = prefix ? `${prefix}.${key}` : key;

    if (value && typeof value === 'object' && !Array.isArray(value)) {
      flattenJSON(value, newKey, result);
    } else if (Array.isArray(value)) {
      value.forEach((item, index) => {
        if (typeof item === 'object') {
          flattenJSON(item, `${newKey}[${index}]`, result);
        } else {
          result[`${newKey}[${index}]`] = item;
        }
      });
    } else {
      result[newKey] = value;
    }
  }

  return result;
}

Unflattening JSON

def unflatten_json(flat_json, sep='.'):
    """
    Unflatten a flattened JSON structure
    """
    result = {}

    for key, value in flat_json.items():
        parts = key.split(sep)
        current = result

        for i, part in enumerate(parts[:-1]):
            # Handle array notation
            if '[' in part:
                array_key, index = part.split('[')
                index = int(index.rstrip(']'))

                if array_key not in current:
                    current[array_key] = []

                # Extend array if needed
                while len(current[array_key]) <= index:
                    current[array_key].append({})

                current = current[array_key][index]
            else:
                if part not in current:
                    current[part] = {}
                current = current[part]

        # Set the final value
        final_key = parts[-1]
        if '[' in final_key:
            array_key, index = final_key.split('[')
            index = int(index.rstrip(']'))

            if array_key not in current:
                current[array_key] = []

            while len(current[array_key]) <= index:
                current[array_key].append(None)

            current[array_key][index] = value
        else:
            current[final_key] = value

    return result

Merging JSON

Python

def deep_merge(dict1, dict2):
    """
    Deep merge two dictionaries
    """
    result = dict1.copy()

    for key, value in dict2.items():
        if key in result and isinstance(result[key], dict) and isinstance(value, dict):
            result[key] = deep_merge(result[key], value)
        else:
            result[key] = value

    return result

# Example
base = {
    "user": {"name": "John", "age": 30},
    "settings": {"theme": "dark"}
}

override = {
    "user": {"age": 31, "email": "john@example.com"},
    "settings": {"language": "en"}
}

merged = deep_merge(base, override)
# Result: {
#     'user': {'name': 'John', 'age': 31, 'email': 'john@example.com'},
#     'settings': {'theme': 'dark', 'language': 'en'}
# }

jq

# Merge two JSON files
jq -s '.[0] * .[1]' file1.json file2.json

# Deep merge
jq -s 'reduce .[] as $item ({}; . * $item)' file1.json file2.json

Transforming Keys

def transform_keys(obj, transform_fn):
    """
    Transform all keys in JSON structure
    """
    if isinstance(obj, dict):
        return {transform_fn(k): transform_keys(v, transform_fn) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [transform_keys(item, transform_fn) for item in obj]
    else:
        return obj

# Convert to snake_case
import re

def to_snake_case(text):
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', text)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()

data = {
    "firstName": "John",
    "lastName": "Doe",
    "userInfo": {
        "emailAddress": "john@example.com"
    }
}

snake_case_data = transform_keys(data, to_snake_case)
# Result: {
#     'first_name': 'John',
#     'last_name': 'Doe',
#     'user_info': {'email_address': 'john@example.com'}
# }

# Convert to camelCase
def to_camel_case(text):
    components = text.split('_')
    return components[0] + ''.join(x.title() for x in components[1:])

Format Conversion

JSON to CSV

Python

import json
import csv
import pandas as pd

# Using pandas (recommended)
data = [
    {"name": "John", "age": 30, "email": "john@example.com"},
    {"name": "Jane", "age": 25, "email": "jane@example.com"}
]

df = pd.DataFrame(data)
df.to_csv('output.csv', index=False)

# Using csv module
with open('output.csv', 'w', newline='') as csvfile:
    if data:
        writer = csv.DictWriter(csvfile, fieldnames=data[0].keys())
        writer.writeheader()
        writer.writerows(data)

# Handle nested JSON
def flatten_for_csv(data):
    """Flatten nested JSON for CSV export"""
    if isinstance(data, list):
        return [flatten_json(item) for item in data]
    return flatten_json(data)

flattened = flatten_for_csv(data)
pd.DataFrame(flattened).to_csv('output.csv', index=False)

jq

# Convert JSON array to CSV
cat data.json | jq -r '.[] | [.name, .age, .email] | @csv'

# With headers
cat data.json | jq -r '["name", "age", "email"], (.[] | [.name, .age, .email]) | @csv'

JSON to YAML

Python

import json
import yaml

# JSON to YAML
with open('data.json', 'r') as json_file:
    data = json.load(json_file)

with open('data.yaml', 'w') as yaml_file:
    yaml.dump(data, yaml_file, default_flow_style=False)

# YAML to JSON
with open('data.yaml', 'r') as yaml_file:
    data = yaml.safe_load(yaml_file)

with open('data.json', 'w') as json_file:
    json.dump(data, json_file, indent=2)

JSON to XML

Python

import json
import xml.etree.ElementTree as ET

def json_to_xml(json_obj, root_name='root'):
    """Convert JSON to XML"""

    def build_xml(parent, obj):
        if isinstance(obj, dict):
            for key, val in obj.items():
                elem = ET.SubElement(parent, key)
                build_xml(elem, val)
        elif isinstance(obj, list):
            for item in obj:
                elem = ET.SubElement(parent, 'item')
                build_xml(elem, item)
        else:
            parent.text = str(obj)

    root = ET.Element(root_name)
    build_xml(root, json_obj)

    return ET.tostring(root, encoding='unicode')

# Example
data = {"user": {"name": "John", "age": 30}}
xml_string = json_to_xml(data)

Advanced Transformations

jq-Style Transformations

Python (pyjq)

import pyjq

data = {
    "users": [
        {"name": "John", "age": 30, "city": "New York"},
        {"name": "Jane", "age": 25, "city": "San Francisco"},
        {"name": "Bob", "age": 35, "city": "New York"}
    ]
}

# Select and transform
result = pyjq.all('.users[] | {name, age}', data)

# Filter and group
result = pyjq.all('group_by(.city) | map({city: .[0].city, count: length})', data)

# Complex transformation
result = pyjq.all('''
    .users
    | map(select(.age > 25))
    | sort_by(.age)
    | reverse
''', data)

jq Examples

# Map over array
echo '[1,2,3,4,5]' | jq 'map(. * 2)'

# Filter and transform
cat users.json | jq '.users | map(select(.age > 25) | {name, email})'

# Group by field
cat data.json | jq 'group_by(.category) | map({category: .[0].category, count: length})'

# Calculate sum
cat orders.json | jq '[.[] | .amount] | add'

# Create new structure
cat users.json | jq '{
  total: length,
  users: [.[] | {name, email}],
  avgAge: ([.[] | .age] | add / length)
}'

# Conditional logic
cat data.json | jq '.[] | if .status == "active" then .name else empty end'

Complex Restructuring

def restructure_json(data):
    """
    Example: Transform flat user records into hierarchical structure
    """
    # Input: [
    #   {"userId": 1, "name": "John", "orderId": 101, "product": "A"},
    #   {"userId": 1, "name": "John", "orderId": 102, "product": "B"},
    #   {"userId": 2, "name": "Jane", "orderId": 103, "product": "C"}
    # ]

    # Output: [
    #   {
    #     "userId": 1,
    #     "name": "John",
    #     "orders": [
    #       {"orderId": 101, "product": "A"},
    #       {"orderId": 102, "product": "B"}
    #     ]
    #   },
    #   {
    #     "userId": 2,
    #     "name": "Jane",
    #     "orders": [{"orderId": 103, "product": "C"}]
    #   }
    # ]

    from collections import defaultdict

    users = defaultdict(lambda: {"orders": []})

    for record in data:
        user_id = record["userId"]

        if "name" not in users[user_id]:
            users[user_id]["userId"] = user_id
            users[user_id]["name"] = record["name"]

        users[user_id]["orders"].append({
            "orderId": record["orderId"],
            "product": record["product"]
        })

    return list(users.values())

Array Operations

import json

def unique_by_key(array, key):
    """Remove duplicates based on key"""
    seen = set()
    result = []

    for item in array:
        value = item.get(key)
        if value not in seen:
            seen.add(value)
            result.append(item)

    return result

def sort_by_key(array, key, reverse=False):
    """Sort array by key"""
    return sorted(array, key=lambda x: x.get(key, ''), reverse=reverse)

def group_by_key(array, key):
    """Group array elements by key"""
    from collections import defaultdict

    groups = defaultdict(list)
    for item in array:
        groups[item.get(key)].append(item)

    return dict(groups)

# Example usage
users = [
    {"name": "John", "age": 30, "city": "New York"},
    {"name": "Jane", "age": 25, "city": "San Francisco"},
    {"name": "Bob", "age": 35, "city": "New York"},
    {"name": "Alice", "age": 28, "city": "San Francisco"}
]

# Sort by age
sorted_users = sort_by_key(users, 'age')

# Group by city
by_city = group_by_key(users, 'city')

JSON Diff and Comparison

import json
from deepdiff import DeepDiff

def json_diff(obj1, obj2):
    """Compare two JSON objects and return differences"""
    diff = DeepDiff(obj1, obj2, ignore_order=True)
    return diff

# Example
old = {
    "name": "John",
    "age": 30,
    "addresses": [{"city": "New York"}]
}

new = {
    "name": "John",
    "age": 31,
    "addresses": [{"city": "San Francisco"}]
}

diff = json_diff(old, new)
print(json.dumps(diff, indent=2))

# Manual diff
def simple_diff(obj1, obj2, path=""):
    """Simple diff implementation"""
    diffs = []

    if type(obj1) != type(obj2):
        diffs.append(f"{path}: type changed from {type(obj1)} to {type(obj2)}")
        return diffs

    if isinstance(obj1, dict):
        all_keys = set(obj1.keys()) | set(obj2.keys())

        for key in all_keys:
            new_path = f"{path}.{key}" if path else key

            if key not in obj1:
                diffs.append(f"{new_path}: added")
            elif key not in obj2:
                diffs.append(f"{new_path}: removed")
            elif obj1[key] != obj2[key]:
                diffs.extend(simple_diff(obj1[key], obj2[key], new_path))

    elif isinstance(obj1, list):
        if len(obj1) != len(obj2):
            diffs.append(f"{path}: length changed from {len(obj1)} to {len(obj2)}")

        for i, (item1, item2) in enumerate(zip(obj1, obj2)):
            diffs.extend(simple_diff(item1, item2, f"{path}[{i}]"))

    elif obj1 != obj2:
        diffs.append(f"{path}: changed from {obj1} to {obj2}")

    return diffs

Schema Generation

def generate_schema(data, name="root"):
    """
    Generate JSON Schema from data
    """
    if isinstance(data, dict):
        properties = {}
        required = []

        for key, value in data.items():
            properties[key] = generate_schema(value, key)
            if value is not None:
                required.append(key)

        schema = {
            "type": "object",
            "properties": properties
        }

        if required:
            schema["required"] = required

        return schema

    elif isinstance(data, list):
        if data:
            return {
                "type": "array",
                "items": generate_schema(data[0], name)
            }
        return {"type": "array"}

    elif isinstance(data, bool):
        return {"type": "boolean"}

    elif isinstance(data, int):
        return {"type": "integer"}

    elif isinstance(data, float):
        return {"type": "number"}

    elif isinstance(data, str):
        return {"type": "string"}

    elif data is None:
        return {"type": "null"}

    return {}

# Example
sample_data = {
    "name": "John",
    "age": 30,
    "email": "john@example.com",
    "active": True,
    "tags": ["developer", "admin"],
    "address": {
        "city": "New York",
        "zip": "10001"
    }
}

schema = generate_schema(sample_data)
print(json.dumps(schema, indent=2))

Utility Functions

Pretty Print with Colors

from pygments import highlight
from pygments.lexers import JsonLexer
from pygments.formatters import TerminalFormatter

def pretty_print_json(data):
    """Print JSON with syntax highlighting"""
    json_str = json.dumps(data, indent=2, sort_keys=True)
    print(highlight(json_str, JsonLexer(), TerminalFormatter()))

Safe Access with Default Values

def safe_get(data, path, default=None):
    """
    Safely get nested value from JSON
    path: "user.address.city" or ["user", "address", "city"]
    """
    if isinstance(path, str):
        path = path.split('.')

    current = data
    for key in path:
        if isinstance(current, dict):
            current = current.get(key)
        elif isinstance(current, list) and key.isdigit():
            index = int(key)
            current = current[index] if 0 <= index < len(current) else None
        else:
            return default

        if current is None:
            return default

    return current

# Example
data = {"user": {"address": {"city": "New York"}}}
city = safe_get(data, "user.address.city")  # "New York"
country = safe_get(data, "user.address.country", "Unknown")  # "Unknown"

Command Line Tools

Using jq

# Format JSON
cat messy.json | jq '.'

# Extract specific fields
cat data.json | jq '.users[] | {name, email}'

# Filter arrays
cat data.json | jq '.[] | select(.age > 30)'

# Transform keys to lowercase
cat data.json | jq 'with_entries(.key |= ascii_downcase)'

# Merge multiple JSON files
jq -s 'add' file1.json file2.json file3.json

# Convert to CSV
cat data.json | jq -r '.[] | [.name, .age, .email] | @csv'

Using Python (command line)

# Pretty print
python -m json.tool input.json

# Compact output
python -c "import json; print(json.dumps(json.load(open('data.json')), separators=(',',':')))"

# Extract field
python -c "import json; data=json.load(open('data.json')); print(data['users'][0]['name'])"

Best Practices

  1. Always validate JSON before processing
  2. Use schema validation for API contracts
  3. Handle errors gracefully (malformed JSON)
  4. Use appropriate libraries (jq, jmespath, jsonpath)
  5. Preserve data types during transformations
  6. Document complex transformations
  7. Use version control for schema definitions
  8. Test transformations with edge cases
  9. Consider memory usage for large files
  10. Use streaming parsers for very large JSON

Common Patterns

API Response Transformation

def transform_api_response(response):
    """Transform API response to application format"""
    return {
        "users": [
            {
                "id": user["userId"],
                "name": f"{user['firstName']} {user['lastName']}",
                "email": user["emailAddress"],
                "active": user["status"] == "active"
            }
            for user in response.get("data", {}).get("users", [])
        ],
        "pagination": {
            "page": response.get("page", 1),
            "total": response.get("totalResults", 0)
        }
    }

Configuration Merging

def merge_configs(base_config, user_config):
    """Merge user configuration with base configuration"""
    result = deep_merge(base_config, user_config)

    # Validate required fields
    required = ["database", "api_key"]
    for field in required:
        if field not in result:
            raise ValueError(f"Missing required field: {field}")

    return result

Notes

  • Always handle edge cases (null, empty arrays, missing keys)
  • Use appropriate tools for the job (jq for CLI, pandas for data science)
  • Consider performance for large JSON files
  • Validate schemas in production environments
  • Keep transformations idempotent when possible
  • Document expected JSON structure
  • Use TypeScript/JSON Schema for type safety