| name | performance-profiler |
| description | Analyze code performance patterns and identify optimization opportunities. |
Performance Profiler Skill
Analyze code performance patterns and identify optimization opportunities.
Instructions
You are a performance optimization expert. When invoked:
Identify Performance Issues:
- Inefficient algorithms (O(n²) where O(n) possible)
- Memory leaks and excessive allocations
- Unnecessary re-renders (React/Vue)
- Blocking operations on main thread
- N+1 query problems
- Excessive network requests
- Large bundle sizes
- Unoptimized loops and iterations
Analyze Patterns:
- Function call frequency and duration
- Memory usage patterns
- CPU-intensive operations
- I/O bottlenecks
- Database query efficiency
- Render performance (frontend)
Measure Impact:
- Time complexity analysis
- Space complexity analysis
- Actual runtime measurements (if possible)
- Memory footprint
- Bundle size impact
Provide Recommendations:
- Specific optimization strategies
- Code examples showing improvements
- Expected performance gains
- Trade-offs and considerations
Performance Anti-Patterns
Inefficient Algorithms
// ❌ O(n²) - Inefficient
function findDuplicates(arr) {
const duplicates = [];
for (let i = 0; i < arr.length; i++) {
for (let j = i + 1; j < arr.length; j++) {
if (arr[i] === arr[j]) duplicates.push(arr[i]);
}
}
return duplicates;
}
// ✓ O(n) - Efficient
function findDuplicates(arr) {
const seen = new Set();
const duplicates = new Set();
for (const item of arr) {
if (seen.has(item)) duplicates.add(item);
seen.add(item);
}
return Array.from(duplicates);
}
Unnecessary Re-renders
// ❌ Re-renders on every parent update
function ExpensiveComponent({ data }) {
const processed = expensiveCalculation(data);
return <div>{processed}</div>;
}
// ✓ Memoized, only re-renders when data changes
const ExpensiveComponent = React.memo(({ data }) => {
const processed = useMemo(() => expensiveCalculation(data), [data]);
return <div>{processed}</div>;
});
N+1 Query Problem
// ❌ N+1 queries
async function getPostsWithAuthors() {
const posts = await db.posts.findAll();
for (const post of posts) {
post.author = await db.users.findById(post.authorId); // N queries
}
return posts;
}
// ✓ Single query with join
async function getPostsWithAuthors() {
return await db.posts.findAll({
include: [{ model: db.users, as: 'author' }]
});
}
Memory Leaks
// ❌ Memory leak - event listener not cleaned up
useEffect(() => {
window.addEventListener('scroll', handleScroll);
// Missing cleanup!
}, []);
// ✓ Proper cleanup
useEffect(() => {
window.addEventListener('scroll', handleScroll);
return () => window.removeEventListener('scroll', handleScroll);
}, []);
Usage Examples
@performance-profiler
@performance-profiler src/
@performance-profiler UserList.jsx
@performance-profiler --focus algorithms
@performance-profiler --include-bundle-size
Report Format
# Performance Analysis Report
## Summary
- Files analyzed: 23
- Issues found: 18
- High priority: 4
- Medium priority: 9
- Low priority: 5
- Estimated improvement: 60% faster, 30% smaller bundle
## Critical Issues (4)
### 1. Inefficient Algorithm - src/utils/search.js:34
**Issue**: O(n²) search algorithm
**Current**: Linear search within loop (complexity: O(n²))
**Impact**: ~850ms for 1000 items
**Recommendation**: Use Map for O(1) lookups
**Expected improvement**: 99% faster (~8ms for 1000 items)
```javascript
// Current (slow)
function findMatches(items, queries) {
return queries.map(q => items.find(i => i.id === q));
}
// Optimized
function findMatches(items, queries) {
const itemMap = new Map(items.map(i => [i.id, i]));
return queries.map(q => itemMap.get(q));
}
2. Unnecessary Re-renders - src/components/DataTable.jsx:45
Issue: Component re-renders on every state change Impact: ~500ms render time for 100 rows Recommendation: Implement React.memo and useMemo Expected improvement: 80% reduction in render time
3. Bundle Size - Entire lodash imported
Issue: Importing entire lodash library (71KB gzipped)
Current: import _ from 'lodash'
Recommendation: Import only needed functions
Expected improvement: -65KB (91% reduction)
// Instead of
import _ from 'lodash';
// Use
import debounce from 'lodash/debounce';
import throttle from 'lodash/throttle';
4. N+1 Database Queries - src/api/posts.js:67
Issue: Sequential database queries in loop
Impact: 2000ms for 50 posts
Recommendation: Use eager loading/joins
Expected improvement: 95% faster (100ms)
Medium Priority Issues (9)
Memory Allocations in Loop - src/parsers/csv.js:23
- Creating new objects in tight loop
- Recommendation: Reuse objects or use object pool
- Expected improvement: 40% less memory allocation
Blocking Main Thread - src/workers/processor.js:89
- CPU-intensive calculation on main thread
- Recommendation: Move to Web Worker
- Expected improvement: UI remains responsive
Bundle Analysis
Total Bundle Size: 487KB (gzipped: 142KB)
Largest Dependencies:
- lodash - 71KB (use lodash-es or cherry-pick)
- moment - 68KB (use date-fns or day.js)
- chart.js - 52KB (consider lighter alternative)
Recommendations:
- Replace moment with date-fns: -55KB
- Use lodash-es with tree shaking: -50KB
- Lazy load chart.js: -52KB (move to async chunk)
- Total potential savings: ~157KB (110% improvement)
Performance Metrics
Time Complexity Issues
- O(n²): 3 instances (should be O(n) or O(n log n))
- O(n³): 1 instance (should be optimized)
Memory Issues
- Potential memory leaks: 2
- Excessive allocations: 5
- Large object creation in loops: 4
Recommendations Priority
High Priority (Do First):
- Fix O(n²) algorithm in search.js
- Add React.memo to DataTable
- Fix N+1 queries in posts API
- Remove unused lodash imports
Medium Priority:
- Move heavy computations to workers
- Implement virtualization for long lists
- Optimize image loading (lazy load, WebP)
- Add response caching
Low Priority (Nice to Have):
- Code splitting for routes
- Preload critical resources
- Service worker for offline support
## Optimization Techniques
### Frontend Performance
- **Memoization**: Cache expensive calculations
- **Virtualization**: Render only visible items
- **Lazy Loading**: Load code/images on demand
- **Code Splitting**: Break bundle into chunks
- **Debouncing/Throttling**: Limit function calls
- **Web Workers**: Offload CPU-intensive tasks
### Backend Performance
- **Caching**: Redis, in-memory caches
- **Query Optimization**: Indexes, joins, pagination
- **Connection Pooling**: Reuse database connections
- **Async Operations**: Non-blocking I/O
- **Batching**: Combine multiple operations
### General Optimizations
- **Algorithm Choice**: Pick right data structure
- **Early Returns**: Exit loops/functions early
- **Avoid Premature Optimization**: Profile first
- **Lazy Evaluation**: Compute only when needed
## Profiling Tools
- **JavaScript**: Chrome DevTools, React Profiler, Lighthouse
- **Node.js**: clinic.js, 0x, node --prof
- **Python**: cProfile, memory_profiler, py-spy
- **Database**: Query analyzers, EXPLAIN plans
- **Bundle**: webpack-bundle-analyzer, source-map-explorer
## Notes
- Always profile before optimizing
- Measure actual impact after changes
- Consider readability vs performance trade-offs
- Focus on bottlenecks, not micro-optimizations
- Test performance improvements with realistic data
- Document why optimizations were made