| name | slash-command-encoder |
| description | Creates ergonomic slash commands (/command) that provide fast, unambiguous access to micro-skills, cascades, and agents. Enhanced with auto-discovery, intelligent routing, parameter validation, and command chaining. Generates comprehensive command catalogs for all installed skills with multi-model integration. |
| tags | commands, interface, ergonomics, auto-discovery, composition, tier-3 |
| version | 2.0.0 |
Slash Command Encoder (Enhanced)
Overview
Creates fast, scriptable /command interfaces for micro-skills, cascades, and agents. This enhanced version includes automatic skill discovery, intelligent command generation, parameter validation, multi-model routing, and command chaining patterns.
Philosophy: Expert Efficiency
Command Line UX for AI: Expert users benefit from fast, precise, scriptable interfaces over natural language when performing repeated operations.
Enhanced Capabilities:
- Auto-Discovery: Scans and catalogs all installed skills automatically
- Intelligent Routing: Commands invoke optimal AI/agent for task
- Parameter Validation: Type-checked, auto-completed parameters
- Command Chaining: Compose commands into pipelines
- Multi-Model Integration: Direct access to Gemini/Codex via commands
Key Principles:
- Fast and unambiguous invocation
- Self-documenting through naming
- Composable and scriptable
- Type-safe parameter handling
- Muscle memory for power users
When to Create Slash Commands
✅ Perfect For:
- Operations performed repeatedly (daily/weekly)
- Workflows that need exact parameters
- Tasks requiring scriptable automation
- Commands that compose into pipelines
- Expert user shortcuts
❌ Don't Use For:
- One-off exploratory tasks
- Operations needing natural language nuance
- Tasks better suited to interactive dialogue
Enhanced Creation Workflow
Step 1: Auto-Discovery Phase
Scan Installed Skills:
# Discovery algorithm
scan_directories:
- ~/.claude/skills/*/SKILL.md
- .claude/skills/*/SKILL.md
extract_metadata:
- name (command base)
- description (help text)
- inputs (parameters)
- outputs (return types)
- integration_points (routing)
Catalog Generation:
discovered_skills:
micro_skills: [extract-data, validate-api, refactor-code, ...]
cascades: [audit-pipeline, code-quality-swarm, ...]
agents: [root-cause-analyzer, code-reviewer, ...]
multi_model: [gemini-megacontext, codex-auto, ...]
Step 2: Command Design (Enhanced)
A. Naming Conventions
Category Prefixes:
# Data operations
/extract-json, /validate-csv, /transform-xml
# Code operations
/lint-python, /test-coverage, /refactor-imports
# Agent invocation
/agent-rca, /agent-reviewer, /agent-architect
# Multi-model
/gemini-search, /codex-auto, /claude-reason
# Workflows
/audit-pipeline, /deploy-prod, /quality-check
Naming Rules:
- Verb-noun pattern:
/validate-api,/extract-data - Agent prefix:
/agent-<specialty> - Model prefix:
/gemini-*,/codex-* - Workflow descriptive:
/audit-pipeline - Max 3 words, hyphenated
B. Parameter Design
Parameter Types:
positional:
- file_path (required, validated)
- target (required, validated)
flags:
--strict: boolean
--format: enum[json, csv, xml]
--output: file_path
options:
--config: json_object
--schema: file_path
--model: enum[claude, gemini, codex]
Validation Schema:
interface CommandParameter {
name: string
type: 'string' | 'number' | 'boolean' | 'file_path' | 'enum'
required: boolean
default?: any
validation?: RegExp | ((value: any) => boolean)
description: string
completion?: () => string[] // Auto-complete options
}
C. Multi-Model Routing
Model Selection Flags:
# Explicit model selection
/analyze src/ --model gemini-megacontext # Large context
/prototype feature.spec --model codex-auto # Rapid prototyping
/reason bug-report.md --model codex-reasoning # Alternative view
/review code.js --model claude # Best reasoning (default)
# Auto-select based on task
/analyze-large-codebase # Auto-routes to gemini-megacontext
/rapid-prototype # Auto-routes to codex-auto
/search-current-info # Auto-routes to gemini-search
Step 3: Command Implementation Structure
Command Definition Template:
command:
name: /command-name
version: 1.0.0
description: |
Brief description of what this command does
category: data | code | agent | workflow | multi-model
parameters:
- name: input
type: file_path
required: true
validation: file_exists
description: Input file to process
- name: --strict
type: boolean
default: false
description: Enable strict validation
- name: --model
type: enum
options: [claude, gemini-megacontext, gemini-search, codex-auto]
default: auto-select
description: AI model to use
routing:
type: micro-skill | cascade | agent | multi-model
target: skill-name | cascade-name | agent-name
model_selection: auto | explicit
binding:
parameter_mapping:
file: ${input}
strictness: ${--strict}
model: ${--model}
output:
format: json | text | file
validation: schema | none
examples:
- command: /command-name input.json --strict
description: Process input.json with strict validation
composition:
chainable: true
pipe_output: stdout
pipe_input: stdin
Step 4: Command Chaining & Composition
Pipeline Patterns:
# Sequential pipeline
/extract data.json | /validate --strict | /transform --format csv > output.csv
# Parallel fan-out
/analyze src/ --parallel [/lint + /security-scan + /test-coverage] | /merge-reports
# Conditional branching
/validate input.json && /deploy-prod || /generate-error-report
# Multi-stage workflow
/audit-pipeline src/ \
--phase theater-detection \
--phase functionality-audit --model codex-auto \
--phase style-audit \
--output report.json
Composition Interface:
interface ChainableCommand {
execute: (input: any) => Promise<CommandResult>
pipe: (next: Command) => ChainableCommand
parallel: (commands: Command[]) => ParallelCommand
conditional: (condition: boolean, ifTrue: Command, ifFalse: Command) => ConditionalCommand
}
Step 5: Auto-Completion & Help
Completion System:
# File path completion
/validate <TAB> # Shows files matching pattern
# Parameter completion
/analyze --<TAB> # Shows available flags
# Model completion
/analyze --model <TAB> # Shows [claude, gemini-megacontext, codex-auto, ...]
# Command discovery
/<TAB> # Shows all available commands by category
Help Generation:
/help command-name
Command: /validate-api
Version: 1.0.0
Category: Data Operations
Description:
Validates API responses against OpenAPI schemas using specialist validation agent
Usage:
/validate-api <file> [--schema <schema_file>] [--strict] [--model <model>]
Parameters:
file Path to API response file (required)
--schema FILE OpenAPI schema file (default: auto-detect)
--strict Enable strict validation mode
--model MODEL AI model [claude|gemini|codex] (default: auto)
Examples:
/validate-api response.json
/validate-api response.json --schema openapi.yaml --strict
/validate-api response.json --model gemini-megacontext
Chains with:
/extract-data → /validate-api → /transform-data
See also:
/validate-csv, /validate-json, /agent-validator
Enhanced Command Templates
1. Data Processing Commands
Template:
command: /process-<datatype>
category: data
routing:
type: micro-skill
target: process-<datatype>
parameters:
- input: file_path (required)
- --format: enum[json, csv, xml]
- --schema: file_path
- --output: file_path
- --model: enum[claude, gemini, codex]
examples:
/extract-json data.json --schema schema.json
/validate-csv data.csv --strict --output report.json
/transform-xml data.xml --format json
Generated Commands:
/extract-json,/extract-csv,/extract-xml/validate-json,/validate-csv,/validate-api/transform-json,/transform-csv,/transform-xml
2. Code Operation Commands
Template:
command: /code-<operation>
category: code
routing:
type: micro-skill | cascade
target: code-<operation>
parameters:
- path: file_path | directory (required)
- --language: enum[python, javascript, typescript, ...]
- --config: file_path
- --fix: boolean (auto-fix issues)
- --model: enum[claude, codex-auto]
examples:
/lint-code src/ --language python --fix
/test-coverage src/ --output coverage-report.json
/refactor-imports src/ --model codex-auto
Generated Commands:
/lint-code,/lint-python,/lint-javascript/test-coverage,/test-suite,/test-watch/refactor-imports,/refactor-di,/refactor-patterns/analyze-complexity,/analyze-security,/analyze-performance
3. Agent Invocation Commands
Template:
command: /agent-<specialty>
category: agent
routing:
type: agent
target: <specialty>-agent
model_selection: auto
parameters:
- task: string (required, detailed task description)
- --context: file_path | directory
- --depth: enum[shallow, normal, deep]
- --model: enum[claude, gemini, codex]
examples:
/agent-rca "Debug intermittent timeout in API" --context src/api/
/agent-reviewer src/feature.js --depth deep
/agent-architect "Design user authentication system" --context docs/
Generated Commands:
/agent-rca→ Root Cause Analyzer/agent-reviewer→ Code Reviewer/agent-architect→ System Architect/agent-security→ Security Auditor/agent-performance→ Performance Optimizer
4. Multi-Model Commands
Template:
command: /<model>-<capability>
category: multi-model
routing:
type: multi-model
target: <model>-cli
model: <model>
parameters:
- task: string (required)
- --context: file_path | directory
- --output: file_path
examples:
/gemini-megacontext "Analyze entire 30K line codebase" --context src/
/gemini-search "What are React 19 breaking changes?"
/gemini-media "Generate architecture diagram" --output diagram.png
/codex-auto "Prototype user auth feature" --context spec.md
/codex-reasoning "Alternative algorithm for sorting" --context src/sort.js
Generated Commands:
/gemini-megacontext→ 1M token context analysis/gemini-search→ Real-time web information/gemini-media→ Image/video generation/gemini-extensions→ Figma, Stripe, Postman integration/codex-auto→ Full Auto sandboxed prototyping/codex-reasoning→ GPT-5-Codex alternative reasoning/claude-reason→ Best overall reasoning (default)
5. Workflow/Cascade Commands
Template:
command: /<workflow-name>
category: workflow
routing:
type: cascade
target: <workflow-name>-cascade
parameters:
- target: file_path | directory (required)
- --phase: enum[all, phase1, phase2, phase3]
- --parallel: boolean (enable parallel execution)
- --model: enum[auto, claude, gemini, codex]
- --output: file_path
examples:
/audit-pipeline src/ --output audit-report.json
/quality-check src/ --parallel --model auto
/deploy-prod --phase all --output deployment-log.txt
Generated Commands:
/audit-pipeline→ theater → functionality → style/quality-check→ [lint + security + coverage] → report/deploy-prod→ validate → test → build → deploy/modernize-legacy→ analyze → refactor → test → document
Integration with Existing Skills
Command Catalog for Current Skills (14 Total)
Audit Skills (4 commands):
/theater-detect src/ # Theater detection audit
/functionality-audit src/ # Functionality audit with Codex iteration
/style-audit src/ # Style and quality audit
/audit-pipeline src/ # All 3 phases sequentially
Multi-Model Skills (7 commands):
/gemini-megacontext "task" # 1M token context
/gemini-search "query" # Real-time web info
/gemini-media "description" # Generate images/videos
/gemini-extensions "task" # Figma, Stripe, etc.
/codex-auto "task" # Full Auto prototyping
/codex-reasoning "problem" # GPT-5-Codex alternative view
/multi-model "task" # Intelligent orchestrator
Root Cause Analysis (1 command):
/agent-rca "problem" # Root cause analysis agent
Three-Tier Architecture (2 commands):
/create-micro-skill "task" # Create new micro-skill
/create-cascade "workflow" # Create new cascade
Command Composition Examples
Example 1: Complete Quality Pipeline:
# Sequential quality checks with multi-model routing
/audit-pipeline src/ \
--phase theater-detection \
--phase functionality-audit --model codex-auto \
--phase style-audit --model claude \
--output quality-report.json
Example 2: Root Cause + Fix Workflow:
# Analyze problem, then auto-fix with Codex
/agent-rca "Intermittent timeout in API" --context src/api/ | \
/codex-auto "Fix identified root cause" --sandbox true
Example 3: Research + Prototype + Test:
# Multi-model cascade
/gemini-search "Best practices for React 19" | \
/codex-auto "Prototype React 19 feature using best practices" | \
/functionality-audit --model codex-auto
Example 4: Parallel Quality Checks:
# Fan-out to multiple tools
/quality-check src/ --parallel [
/theater-detect,
/lint-code,
/test-coverage,
/analyze-security
] | /merge-reports --output comprehensive-report.json
Integration with Claude Code Command System
Command Registration
Auto-Registration Pattern:
# On skill installation, auto-register commands
.claude/skills/*/SKILL.md → parse → generate → .claude/commands/<command>.md
# Command file format
.claude/commands/validate-api.md:
---
name: validate-api
binding: micro-skill:validate-api
---
Validate API responses against OpenAPI schemas.
Usage: /validate-api <file> [--schema <schema>] [--strict]
Command Discovery
Discovery Mechanism:
on_startup:
- scan ~/.claude/skills/*/SKILL.md
- scan .claude/skills/*/SKILL.md
- parse metadata (name, inputs, category)
- generate command definitions
- register with Claude Code CLI
- build auto-completion index
on_update:
- watch for skill changes
- regenerate affected commands
- update completion index
Parameter Validation
Validation Pipeline:
interface ValidationPipeline {
// Type checking
validateTypes: (params: any) => ValidationResult
// File existence
validatePaths: (paths: string[]) => ValidationResult
// Enum constraints
validateEnums: (values: any) => ValidationResult
// Custom validators
validateCustom: (value: any, validator: Function) => ValidationResult
// Aggregate results
aggregate: () => ValidationResult
}
// Before command execution
const result = validate(command, parameters)
if (!result.valid) {
throw new ValidationError(result.errors)
}
Command Chaining Patterns
Pattern 1: Sequential Pipeline
# Data processing pipeline
/extract-json data.json | \
/validate-api --schema openapi.yaml | \
/transform-json --format csv | \
/generate-report --template summary
Pattern 2: Parallel Fan-Out
# Parallel quality checks
/analyze src/ --parallel [
/lint-code,
/security-scan --deep,
/test-coverage,
/complexity-analysis
] | /merge-reports --format html
Pattern 3: Conditional Branching
# Deploy based on quality
/validate-quality src/ && \
/deploy-prod --environment production || \
/generate-quality-report --notify team
Pattern 4: Iterative Refinement
# Refactor until quality threshold met
while [[ $(quality-score) -lt 85 ]]; do
/refactor-code src/ --model codex-auto
/test-coverage src/
done
Pattern 5: Multi-Model Cascade
# Research → Design → Implement → Test
/gemini-search "Best practices for feature X" | \
/agent-architect "Design feature X with best practices" | \
/codex-auto "Implement designed feature" | \
/functionality-audit --model codex-auto | \
/style-audit
Best Practices (Enhanced)
Command Design
- ✅ Use clear, consistent naming (verb-noun)
- ✅ Limit positional parameters (max 2-3)
- ✅ Provide sensible defaults
- ✅ Enable command chaining
- ✅ Include comprehensive help
- ✅ Support model selection for flexibility
Parameter Design
- ✅ Type-safe with validation
- ✅ Auto-completion enabled
- ✅ Required vs optional clearly marked
- ✅ Enum constraints for options
- ✅ File path validation
Integration Design
- ✅ Clean routing to skills/agents
- ✅ Standardized output formats
- ✅ Composable interfaces
- ✅ Error handling with clear messages
- ✅ Progress reporting for long operations
Working with Slash Command Encoder
Invocation: "Create slash commands for [skill/cascade/agent] with [parameters] that [composition pattern]"
The encoder will:
- Auto-discover all installed skills
- Design command naming and parameters
- Create validation schemas
- Generate command definitions
- Register with Claude Code CLI
- Build auto-completion index
- Produce comprehensive command catalog
Advanced Features:
- Automatic skill discovery and catalog generation
- Intelligent multi-model routing
- Type-safe parameter validation
- Command chaining and composition
- Auto-completion for parameters
- Comprehensive help generation
- Integration with Claude Code CLI
Integration:
- Works with micro-skill-creator for skill-to-command generation
- Works with cascade-orchestrator for workflow commands
- Works with multi-model system for AI routing
- Works with audit-pipeline for quality commands
- Works with root-cause-analyzer for debugging commands
Version 2.0 Enhancements:
- Auto-discovery of all installed skills
- Multi-model intelligent routing
- Command chaining and composition patterns
- Type-safe parameter validation
- Auto-completion system
- Comprehensive command catalog generation
- Integration with Gemini/Codex CLIs
- Enhanced help and documentation generation