| name | when-analyzing-skill-gaps-use-skill-gap-analyzer |
| version | 1.0.0 |
| description | Analyze skill library to identify coverage gaps, redundant overlaps, optimization opportunities, and provide recommendations for skill portfolio improvement |
| tags | meta-tool, skill-management, gap-analysis, portfolio-optimization |
| complexity | MEDIUM |
| agents_required | researcher, code-analyzer |
| auto_trigger | false |
Skill Gap Analyzer
Purpose: Perform comprehensive analysis of skill library to identify missing capabilities, redundant functionality, optimization opportunities, and provide actionable recommendations for skill portfolio improvement.
When to Use This Skill
- When building a new skill library
- Quarterly skill portfolio reviews
- Before large refactoring efforts
- When considering new skill additions
- After major project pivots
- When optimizing resource allocation
Analysis Dimensions
1. Coverage Gap Analysis
- Domain coverage mapping
- Missing capability identification
- Use case scenario testing
- Workflow completeness assessment
- Integration point analysis
2. Redundancy Detection
- Duplicate functionality identification
- Overlapping capability mapping
- Consolidation opportunity analysis
- Version conflict detection
- Naming collision identification
3. Optimization Opportunities
- Under-utilized skill detection
- Over-complex skill identification
- Composability improvement suggestions
- Dependency optimization
- Performance bottleneck analysis
4. Usage Pattern Analysis
- Frequency metrics
- Co-occurrence patterns
- Success rate tracking
- Token efficiency measurement
- Agent utilization patterns
5. Recommendation Generation
- Prioritized action items
- Consolidation strategies
- New skill proposals
- Deprecation candidates
- Restructuring plans
Execution Process
Phase 1: Library Inventory
# Initialize analysis session
npx claude-flow@alpha hooks pre-task --description "Analyzing skill library gaps"
# Scan skill directories
find ~/.claude/skills -name "SKILL.md" -o -name "*.skill.md"
Inventory Script:
function inventorySkills(skillDirectory) {
const inventory = {
totalSkills: 0,
categories: {},
capabilities: {},
agents: {},
complexity: {},
tags: {}
};
// Parse each SKILL.md file
const skillFiles = findSkillFiles(skillDirectory);
for (const file of skillFiles) {
const metadata = parseYAMLFrontmatter(file);
inventory.totalSkills++;
// Categorize by path
const category = extractCategory(file);
inventory.categories[category] = (inventory.categories[category] || 0) + 1;
// Track capabilities
const capabilities = extractCapabilities(metadata.description);
capabilities.forEach(cap => {
inventory.capabilities[cap] = (inventory.capabilities[cap] || []);
inventory.capabilities[cap].push(metadata.name);
});
// Track required agents
if (metadata.agents_required) {
metadata.agents_required.forEach(agent => {
inventory.agents[agent] = (inventory.agents[agent] || 0) + 1;
});
}
// Track complexity
inventory.complexity[metadata.complexity || 'UNKNOWN'] =
(inventory.complexity[metadata.complexity || 'UNKNOWN'] || 0) + 1;
// Track tags
if (metadata.tags) {
metadata.tags.forEach(tag => {
inventory.tags[tag] = (inventory.tags[tag] || 0) + 1;
});
}
}
return inventory;
}
function extractCapabilities(description) {
// Extract action verbs and key nouns
const capabilities = [];
const verbs = description.match(/\b(analyz|creat|generat|optimiz|manag|coordinat|orchestrat|deploy|monitor|test|review|document|integrat|automat|validat|secur|perform|debug|refactor|migrat|transform)\w+/gi) || [];
capabilities.push(...verbs.map(v => v.toLowerCase()));
return [...new Set(capabilities)]; // Deduplicate
}
Store Inventory:
npx claude-flow@alpha memory store --key "gap-analysis/inventory" --value "{
\"totalSkills\": <count>,
\"categories\": {...},
\"capabilities\": {...},
\"timestamp\": \"<ISO8601>\"
}"
Phase 2: Coverage Gap Detection
Domain Coverage Matrix:
function analyzeCoverageGaps(inventory, requiredDomains) {
const gaps = [];
// Define comprehensive domain requirements
const domains = {
"Development": [
"code-generation", "testing", "debugging", "refactoring",
"documentation", "code-review", "architecture"
],
"DevOps": [
"deployment", "monitoring", "ci-cd", "infrastructure",
"security", "scaling", "backup-recovery"
],
"Project Management": [
"planning", "estimation", "tracking", "reporting",
"risk-management", "stakeholder-communication"
],
"Data": [
"data-analysis", "data-transformation", "data-validation",
"data-migration", "data-visualization"
],
"AI/ML": [
"model-training", "inference", "optimization",
"evaluation", "deployment", "monitoring"
],
"Integration": [
"api-integration", "webhook-handling", "event-processing",
"message-queue", "service-mesh"
]
};
// Check coverage for each domain
for (const [domain, capabilities] of Object.entries(domains)) {
const coverage = capabilities.map(cap => {
const covered = inventory.capabilities[cap]?.length > 0;
const skills = inventory.capabilities[cap] || [];
return { capability: cap, covered, skills };
});
const missingCaps = coverage.filter(c => !c.covered);
if (missingCaps.length > 0) {
gaps.push({
domain: domain,
coverage: ((capabilities.length - missingCaps.length) / capabilities.length * 100).toFixed(1) + "%",
missingCapabilities: missingCaps.map(c => c.capability),
priority: calculatePriority(domain, missingCaps.length, capabilities.length)
});
}
}
return gaps;
}
function calculatePriority(domain, missingCount, totalCount) {
const coverageRatio = 1 - (missingCount / totalCount);
const domainImportance = {
"Development": 1.0,
"DevOps": 0.9,
"Project Management": 0.7,
"Data": 0.8,
"AI/ML": 0.8,
"Integration": 0.9
};
const score = coverageRatio * (domainImportance[domain] || 0.5);
if (score < 0.3) return "critical";
if (score < 0.6) return "high";
if (score < 0.8) return "medium";
return "low";
}
Use Case Scenario Testing:
function testScenarioCoverage(inventory) {
const scenarios = [
{
name: "Full-stack web app development",
requiredCapabilities: [
"code-generation", "testing", "database-design",
"api-integration", "deployment", "monitoring"
]
},
{
name: "ML model training and deployment",
requiredCapabilities: [
"data-analysis", "model-training", "evaluation",
"optimization", "deployment", "monitoring"
]
},
{
name: "GitHub workflow automation",
requiredCapabilities: [
"code-review", "testing", "ci-cd", "release-management",
"issue-tracking", "documentation"
]
},
{
name: "Prompt engineering and optimization",
requiredCapabilities: [
"prompt-analysis", "optimization", "testing",
"documentation", "version-control"
]
}
];
const scenarioResults = scenarios.map(scenario => {
const coverage = scenario.requiredCapabilities.map(cap => ({
capability: cap,
covered: inventory.capabilities[cap]?.length > 0,
skills: inventory.capabilities[cap] || []
}));
const coveragePercent = (coverage.filter(c => c.covered).length /
coverage.length * 100).toFixed(1);
return {
scenario: scenario.name,
coverage: coveragePercent + "%",
missing: coverage.filter(c => !c.covered).map(c => c.capability),
canExecute: coverage.every(c => c.covered)
};
});
return scenarioResults;
}
Phase 3: Redundancy Detection
Overlap Analysis:
function detectRedundancy(inventory) {
const redundancies = [];
// Find capabilities handled by multiple skills
for (const [capability, skills] of Object.entries(inventory.capabilities)) {
if (skills.length > 2) {
// Analyze actual overlap
const skillDetails = skills.map(name => loadSkillDetails(name));
const overlap = analyzeOverlap(skillDetails);
if (overlap.percentage > 70) {
redundancies.push({
capability: capability,
skillCount: skills.length,
skills: skills,
overlapPercentage: overlap.percentage,
recommendation: generateConsolidationRecommendation(skillDetails)
});
}
}
}
// Find naming collisions
const namePatterns = {};
for (const [category, skillList] of Object.entries(inventory.categories)) {
// Extract common patterns
const patterns = skillList.map(extractNamePattern);
// Identify potential confusion
}
return redundancies;
}
function analyzeOverlap(skills) {
// Compare descriptions, capabilities, processes
const descriptions = skills.map(s => s.description);
const commonWords = findCommonWords(descriptions);
// Calculate Jaccard similarity
const allWords = new Set(descriptions.flatMap(d => d.split(/\s+/)));
const overlap = commonWords.size / allWords.size * 100;
return { percentage: overlap, commonWords: Array.from(commonWords) };
}
Phase 4: Optimization Opportunities
Researcher Agent Task:
# Spawn researcher agent for optimization analysis
# Agent instructions:
# 1. Analyze usage patterns from memory
# 2. Identify under-utilized skills (low frequency)
# 3. Identify over-complex skills (high token cost, low success rate)
# 4. Suggest composability improvements
# 5. Recommend dependency optimizations
# 6. Store findings in memory
npx claude-flow@alpha memory store --key "gap-analysis/optimization" --value "{
\"underutilized\": [...],
\"overcomplicated\": [...],
\"composability\": [...],
\"dependencies\": [...]
}"
Optimization Detection:
function identifyOptimizations(inventory, usageMetrics) {
const optimizations = [];
// Under-utilized skills
const underutilized = usageMetrics.filter(m =>
m.frequency < 0.05 && // Less than 5% usage
m.lastUsed > 90 // Days since last use
).map(m => ({
skill: m.name,
frequency: m.frequency,
lastUsed: m.lastUsed + " days ago",
recommendation: "Review for deprecation or promotion"
}));
optimizations.push({
type: "under-utilized",
count: underutilized.length,
skills: underutilized
});
// Over-complex skills
const overcomplex = usageMetrics.filter(m =>
m.avgTokens > 5000 && // High token usage
m.successRate < 0.7 // Low success rate
).map(m => ({
skill: m.name,
avgTokens: m.avgTokens,
successRate: (m.successRate * 100).toFixed(1) + "%",
recommendation: "Break into smaller skills or simplify"
}));
optimizations.push({
type: "over-complex",
count: overcomplex.length,
skills: overcomplex
});
// Composability improvements
const composable = identifyComposablePatterns(inventory);
optimizations.push({
type: "composability",
count: composable.length,
opportunities: composable
});
return optimizations;
}
Phase 5: Recommendation Generation
Report Format:
## Skill Gap Analysis Report
**Date:** <timestamp>
**Total Skills Analyzed:** <count>
**Analysis Duration:** <time>
---
## Executive Summary
### Coverage
- Overall coverage: <percentage>%
- Critical gaps: <count>
- High-priority gaps: <count>
### Redundancy
- Duplicate functionality: <count> instances
- Consolidation opportunities: <count>
- Potential savings: <tokens/storage>
### Optimization
- Under-utilized skills: <count>
- Over-complex skills: <count>
- Composability improvements: <count>
---
## Coverage Gaps
### Critical Priority
1. **Domain:** [name]
- Coverage: [percentage]%
- Missing capabilities:
- [capability 1]
- [capability 2]
- Recommended action: Create skill "[proposed-name]"
- Impact: [high/medium/low]
### High Priority
...
---
## Redundancy Analysis
### Duplicate Functionality
1. **Capability:** [name]
- Handled by: [skill1], [skill2], [skill3]
- Overlap: [percentage]%
- Recommendation: Consolidate into "[new-skill-name]"
- Estimated savings: [tokens] tokens, [storage] MB
---
## Optimization Opportunities
### Under-Utilized Skills
| Skill | Frequency | Last Used | Recommendation |
|-------|-----------|-----------|----------------|
| [name] | [%] | [days] ago | [action] |
### Over-Complex Skills
| Skill | Avg Tokens | Success Rate | Recommendation |
|-------|------------|--------------|----------------|
| [name] | [count] | [%] | [action] |
### Composability Improvements
1. **Pattern:** [description]
- Current approach: [details]
- Improved approach: [details]
- Benefits: [list]
---
## Scenario Coverage
| Scenario | Coverage | Missing | Can Execute? |
|----------|----------|---------|--------------|
| Full-stack web app | [%] | [list] | [yes/no] |
| ML deployment | [%] | [list] | [yes/no] |
| GitHub automation | [%] | [list] | [yes/no] |
---
## Prioritized Recommendations
### Immediate Actions (This Week)
1. [ ] Create skill: [name] - [justification]
2. [ ] Consolidate: [skills] → [new-skill]
3. [ ] Deprecate: [skill] - [reason]
### Short-Term (This Month)
1. [ ] Optimize: [skill] - [changes]
2. [ ] Document: [skill] - [missing-docs]
3. [ ] Test: [scenario] - [coverage-improvement]
### Long-Term (This Quarter)
1. [ ] Refactor: [domain] - [architecture]
2. [ ] Integrate: [external-tool] - [capability]
3. [ ] Research: [emerging-technology] - [potential]
---
## Metrics Comparison
| Metric | Current | Target | Gap |
|--------|---------|--------|-----|
| Total skills | [count] | - | - |
| Domain coverage | [%] | 90% | [%] |
| Redundancy rate | [%] | <10% | [%] |
| Avg complexity | [level] | MEDIUM | - |
| Under-utilization | [%] | <5% | [%] |
Concrete Example: Real Analysis
Input: Skill Library (Fragment)
Inventory:
- Total skills: 47
- Categories: development (15), github (12), optimization (8), testing (5), meta-tools (3), misc (4)
- Capabilities mapped: 127
- Agents used: 18 distinct types
Analysis Output
Coverage Gaps Detected:
{
"domain": "Data Engineering",
"coverage": "23.1%",
"missingCapabilities": [
"data-transformation",
"data-validation",
"data-migration",
"data-visualization",
"etl-pipeline"
],
"priority": "high",
"recommendation": "Create 'data-engineering-workflow' skill"
}
Redundancy Detected:
{
"capability": "code-review",
"skillCount": 4,
"skills": [
"code-review-assistant",
"github-code-review",
"pr-review-automation",
"code-quality-checker"
],
"overlapPercentage": 78,
"recommendation": "Consolidate into unified 'code-review-orchestrator' with specialized sub-skills"
}
Optimization Opportunities:
{
"type": "under-utilized",
"skills": [
{
"skill": "legacy-converter",
"frequency": 0.02,
"lastUsed": "127 days ago",
"recommendation": "Archive or promote with use-case documentation"
}
]
},
{
"type": "over-complex",
"skills": [
{
"skill": "full-stack-architect",
"avgTokens": 8743,
"successRate": "64.3%",
"recommendation": "Break into: backend-architect, frontend-architect, database-architect"
}
]
}
Recommendations:
- Critical: Create data engineering skill (coverage: 23% → 85%)
- High: Consolidate 4 code review skills (save ~15K tokens, reduce confusion)
- Medium: Break full-stack-architect into 3 focused skills
- Low: Archive legacy-converter or add promotion documentation
Expected Impact:
- Coverage improvement: 67% → 89%
- Redundancy reduction: 18% → 7%
- Avg token efficiency: +32%
- Maintenance overhead: -40%
Integration with Development Workflow
Quarterly Review Process
# 1. Run gap analysis
npx claude-flow@alpha hooks pre-task --description "Quarterly skill gap analysis"
# 2. Spawn researcher agent for analysis
# Agent performs comprehensive inventory and analysis
# 3. Review recommendations
npx claude-flow@alpha memory retrieve --key "gap-analysis/recommendations"
# 4. Create action plan
# Prioritize and schedule improvements
# 5. Track progress
npx claude-flow@alpha hooks post-task --task-id "gap-analysis-q1-2025"
Continuous Monitoring
# Track skill usage
npx claude-flow@alpha hooks post-task --skill-used "[name]"
# Aggregate metrics monthly
npx claude-flow@alpha memory aggregate --pattern "skills/usage/*" --period "monthly"
Success Metrics
- Domain coverage: >85%
- Redundancy rate: <10%
- Under-utilization: <5%
- Scenario execution: 100% of core scenarios
- Optimization adoption: >80% of recommendations implemented
Related Skills
when-optimizing-prompts-use-prompt-optimization-analyzer- Optimize individual skillswhen-managing-token-budget-use-token-budget-advisor- Budget impact analysisskill-forge- Create new skills based on recommendations
Notes
- Run quarterly or after major changes
- Involve team in recommendation review
- Track recommendation adoption rate
- Update analysis criteria as needs evolve
- Share findings across teams