Claude Code Plugins

Community-maintained marketplace

Feedback

when-managing-token-budget-use-token-budget-advisor

@DNYoussef/ai-chrome-extension
0
0

Proactive token budget management tool for assessing usage, analyzing task complexity, generating chunking strategies, and creating execution plans that stay within budget limits

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name when-managing-token-budget-use-token-budget-advisor
version 1.0.0
description Proactive token budget management tool for assessing usage, analyzing task complexity, generating chunking strategies, and creating execution plans that stay within budget limits
tags meta-tool, token-management, budget-optimization, task-planning, chunking
complexity MEDIUM
agents_required planner, code-analyzer
auto_trigger false

Token Budget Advisor

Purpose: Proactively manage token budgets by analyzing current usage, estimating task complexity, generating intelligent chunking strategies, prioritizing work, and creating step-by-step execution plans that stay within budget limits.

When to Use This Skill

  • Before starting large or complex tasks
  • When approaching token budget limits
  • During multi-phase project planning
  • When tasks fail due to token exhaustion
  • For optimizing resource allocation
  • When coordinating multiple agents

Analysis Dimensions

1. Budget Assessment

  • Current token usage vs. limits
  • Remaining budget calculation
  • Historical usage patterns
  • Projected usage for pending tasks
  • Buffer allocation for safety

2. Task Complexity Analysis

  • Token estimation by task type
  • Agent requirements and costs
  • Integration complexity
  • Testing overhead
  • Documentation needs

3. Chunking Strategy

  • Logical task boundaries
  • Dependency analysis
  • Chunk size optimization
  • Inter-chunk communication
  • State management between chunks

4. Priority Optimization

  • Critical path identification
  • Value vs. cost analysis
  • Risk assessment
  • Quick wins identification
  • Deferrable work detection

5. Execution Planning

  • Step-by-step task sequence
  • Budget tracking per step
  • Checkpoint planning
  • Rollback strategies
  • Progress monitoring

Execution Process

Phase 1: Budget Assessment

# Initialize budget analysis
npx claude-flow@alpha hooks pre-task --description "Analyzing token budget"

# Retrieve current usage
npx claude-flow@alpha memory retrieve --key "token-usage/current"

Budget Calculation:

function assessBudget(tokenLimit = 200000) {
  const usage = {
    limit: tokenLimit,
    used: getCurrentTokenUsage(),
    remaining: 0,
    buffer: 0,
    available: 0,
    status: "unknown"
  };

  usage.remaining = usage.limit - usage.used;
  usage.buffer = Math.floor(usage.limit * 0.15); // 15% safety buffer
  usage.available = usage.remaining - usage.buffer;

  // Calculate status
  const usagePercent = (usage.used / usage.limit) * 100;
  if (usagePercent > 90) {
    usage.status = "critical";
  } else if (usagePercent > 75) {
    usage.status = "warning";
  } else if (usagePercent > 50) {
    usage.status = "caution";
  } else {
    usage.status = "healthy";
  }

  return usage;
}

function getCurrentTokenUsage() {
  // Extract from context or tracking
  // This is a placeholder - actual implementation depends on system
  return 36000; // Example current usage
}

Historical Pattern Analysis:

function analyzeUsagePatterns(historyData) {
  const patterns = {
    avgPerTask: 0,
    peakUsage: 0,
    typicalDuration: 0,
    commonOverages: []
  };

  if (historyData.length === 0) {
    // No history, use conservative estimates
    patterns.avgPerTask = 15000;
    patterns.peakUsage = 40000;
    patterns.typicalDuration = 30; // minutes
    return patterns;
  }

  // Calculate averages
  patterns.avgPerTask = historyData.reduce((sum, task) =>
    sum + task.tokens, 0) / historyData.length;

  patterns.peakUsage = Math.max(...historyData.map(t => t.tokens));

  patterns.typicalDuration = historyData.reduce((sum, task) =>
    sum + task.duration, 0) / historyData.length;

  // Identify common overage causes
  const overages = historyData.filter(t => t.exceeded_estimate);
  const causes = {};
  overages.forEach(o => {
    causes[o.reason] = (causes[o.reason] || 0) + 1;
  });
  patterns.commonOverages = Object.entries(causes)
    .sort((a, b) => b[1] - a[1])
    .slice(0, 5)
    .map(([reason, count]) => ({ reason, count }));

  return patterns;
}

Phase 2: Task Complexity Analysis

Complexity Estimator:

function estimateTaskComplexity(taskDescription) {
  const complexity = {
    baseTokens: 0,
    multipliers: {},
    totalEstimate: 0,
    confidence: "low",
    factors: []
  };

  // Base estimation by task type
  const taskType = inferTaskType(taskDescription);
  const baseEstimates = {
    "simple-edit": 2000,
    "feature-implementation": 15000,
    "refactoring": 8000,
    "architecture-design": 12000,
    "full-stack-development": 40000,
    "debugging": 5000,
    "testing": 6000,
    "documentation": 4000,
    "integration": 10000,
    "migration": 20000
  };

  complexity.baseTokens = baseEstimates[taskType] || 10000;
  complexity.factors.push({ type: "base", value: complexity.baseTokens, reason: `Task type: ${taskType}` });

  // Apply multipliers

  // Multiple agents
  const agentCount = estimateAgentCount(taskDescription);
  if (agentCount > 3) {
    complexity.multipliers.agents = 1.3;
    complexity.factors.push({ type: "multiplier", value: 1.3, reason: `${agentCount} agents required` });
  }

  // External integrations
  if (/\b(api|database|github|external|integration)\b/i.test(taskDescription)) {
    complexity.multipliers.integration = 1.4;
    complexity.factors.push({ type: "multiplier", value: 1.4, reason: "External integrations" });
  }

  // Testing requirements
  if (/\b(test|coverage|tdd|e2e)\b/i.test(taskDescription)) {
    complexity.multipliers.testing = 1.25;
    complexity.factors.push({ type: "multiplier", value: 1.25, reason: "Testing requirements" });
  }

  // Documentation
  if (/\b(document|readme|guide|tutorial)\b/i.test(taskDescription)) {
    complexity.multipliers.documentation = 1.15;
    complexity.factors.push({ type: "multiplier", value: 1.15, reason: "Documentation needed" });
  }

  // Complexity keywords
  if (/\b(complex|advanced|comprehensive|full|complete|entire)\b/i.test(taskDescription)) {
    complexity.multipliers.complexity = 1.5;
    complexity.factors.push({ type: "multiplier", value: 1.5, reason: "High complexity indicators" });
  }

  // Calculate total
  const totalMultiplier = Object.values(complexity.multipliers)
    .reduce((product, mult) => product * mult, 1);

  complexity.totalEstimate = Math.ceil(complexity.baseTokens * totalMultiplier);

  // Confidence assessment
  const factorCount = Object.keys(complexity.multipliers).length;
  if (factorCount >= 3) {
    complexity.confidence = "high";
  } else if (factorCount >= 1) {
    complexity.confidence = "medium";
  } else {
    complexity.confidence = "low";
  }

  return complexity;
}

function inferTaskType(description) {
  const patterns = {
    "simple-edit": /\b(fix typo|update|change|rename|small)\b/i,
    "feature-implementation": /\b(implement|add feature|create|build)\b/i,
    "refactoring": /\b(refactor|reorganize|restructure|cleanup)\b/i,
    "architecture-design": /\b(design|architect|plan|structure)\b/i,
    "full-stack-development": /\b(full.?stack|frontend.*backend|complete app)\b/i,
    "debugging": /\b(debug|fix bug|resolve error|troubleshoot)\b/i,
    "testing": /\b(test|tdd|coverage|qa)\b/i,
    "documentation": /\b(document|write.*guide|readme|tutorial)\b/i,
    "integration": /\b(integrat|connect|link|api.*call)\b/i,
    "migration": /\b(migrat|convert|port|upgrade)\b/i
  };

  for (const [type, pattern] of Object.entries(patterns)) {
    if (pattern.test(description)) {
      return type;
    }
  }

  return "feature-implementation"; // Default
}

function estimateAgentCount(description) {
  let count = 1; // At least one agent

  if (/\b(frontend|backend|database)\b/i.test(description)) count++;
  if (/\b(test|qa)\b/i.test(description)) count++;
  if (/\b(review|quality)\b/i.test(description)) count++;
  if (/\b(document)\b/i.test(description)) count++;
  if (/\b(deploy|devops|ci.?cd)\b/i.test(description)) count++;

  return count;
}

Phase 3: Chunking Strategy

Planner Agent Task:

# Spawn planner agent for chunking strategy
# Agent instructions:
# 1. Analyze task dependencies
# 2. Identify logical boundaries
# 3. Optimize chunk sizes (within budget)
# 4. Define inter-chunk communication
# 5. Create state management plan
# 6. Store strategy in memory

npx claude-flow@alpha memory store --key "budget/chunking-strategy" --value "{
  \"chunks\": [...],
  \"dependencies\": {...},
  \"communication\": {...}
}"

Chunking Algorithm:

function generateChunkingStrategy(task, availableBudget) {
  const strategy = {
    chunks: [],
    totalEstimate: 0,
    fitsInBudget: false,
    recommendation: ""
  };

  const complexity = estimateTaskComplexity(task.description);

  // If task fits in budget, no chunking needed
  if (complexity.totalEstimate <= availableBudget * 0.85) {
    strategy.chunks.push({
      id: "chunk-1",
      name: task.name,
      description: task.description,
      estimatedTokens: complexity.totalEstimate,
      dependencies: [],
      priority: "high"
    });
    strategy.totalEstimate = complexity.totalEstimate;
    strategy.fitsInBudget = true;
    strategy.recommendation = "Execute as single task";
    return strategy;
  }

  // Task needs chunking
  const idealChunkSize = Math.floor(availableBudget * 0.4); // 40% of available per chunk
  const chunkCount = Math.ceil(complexity.totalEstimate / idealChunkSize);

  // Break down by logical phases
  const phases = decomposeIntoPhases(task.description);

  phases.forEach((phase, index) => {
    const phaseEstimate = Math.ceil(complexity.totalEstimate / phases.length);

    strategy.chunks.push({
      id: `chunk-${index + 1}`,
      name: phase.name,
      description: phase.description,
      estimatedTokens: phaseEstimate,
      dependencies: phase.dependencies,
      priority: phase.priority,
      outputs: phase.outputs,
      nextChunkInputs: phase.nextChunkInputs
    });
  });

  strategy.totalEstimate = strategy.chunks.reduce((sum, c) => sum + c.estimatedTokens, 0);
  strategy.fitsInBudget = strategy.chunks.every(c => c.estimatedTokens <= availableBudget);

  if (strategy.fitsInBudget) {
    strategy.recommendation = `Execute in ${strategy.chunks.length} sequential chunks`;
  } else {
    strategy.recommendation = "Task too large - consider scope reduction or multi-session execution";
  }

  return strategy;
}

function decomposeIntoPhases(description) {
  // Intelligent phase decomposition
  const phases = [];

  // Phase 1: Research and Planning
  phases.push({
    name: "Research & Planning",
    description: "Analyze requirements, research best practices, design approach",
    dependencies: [],
    priority: "high",
    outputs: ["requirements.md", "architecture-design.md"],
    nextChunkInputs: ["architecture-design.md"]
  });

  // Phase 2: Core Implementation
  phases.push({
    name: "Core Implementation",
    description: "Implement main functionality based on design",
    dependencies: ["chunk-1"],
    priority: "high",
    outputs: ["src/**/*.js", "core-features"],
    nextChunkInputs: ["core-features"]
  });

  // Phase 3: Testing
  phases.push({
    name: "Testing & Validation",
    description: "Create tests, validate functionality, fix bugs",
    dependencies: ["chunk-2"],
    priority: "medium",
    outputs: ["tests/**/*.test.js", "coverage-report"],
    nextChunkInputs: ["coverage-report"]
  });

  // Phase 4: Documentation & Polish
  phases.push({
    name: "Documentation & Polish",
    description: "Write documentation, refine code, finalize",
    dependencies: ["chunk-3"],
    priority: "low",
    outputs: ["README.md", "docs/**/*.md", "final-code"],
    nextChunkInputs: []
  });

  return phases;
}

Phase 4: Priority Optimization

Priority Matrix:

function optimizePriorities(chunks, constraints) {
  const prioritized = chunks.map(chunk => {
    const score = calculatePriorityScore(chunk, constraints);
    return { ...chunk, priorityScore: score };
  });

  // Sort by priority score (higher = more important)
  prioritized.sort((a, b) => b.priorityScore - a.priorityScore);

  return prioritized;
}

function calculatePriorityScore(chunk, constraints) {
  let score = 0;

  // Base priority
  const priorityWeights = { high: 100, medium: 50, low: 25 };
  score += priorityWeights[chunk.priority] || 50;

  // Dependency blocking (blocks other chunks)
  const blockingCount = countDependents(chunk.id, constraints.dependencies);
  score += blockingCount * 20;

  // Critical path
  if (isOnCriticalPath(chunk, constraints)) {
    score += 30;
  }

  // Quick wins (low tokens, high value)
  if (chunk.estimatedTokens < 5000 && chunk.value === "high") {
    score += 25;
  }

  // Risk mitigation (high-risk items earlier)
  if (chunk.risk === "high") {
    score += 15;
  }

  return score;
}

Phase 5: Execution Planning

Execution Plan Format:

## Token Budget Execution Plan

### Budget Status
- Limit: 200,000 tokens
- Used: 36,000 tokens (18%)
- Remaining: 164,000 tokens
- Buffer: 30,000 tokens (15%)
- **Available: 134,000 tokens**
- Status: ✅ Healthy

### Task Analysis
**Task:** Build full-stack e-commerce application
**Estimated Complexity:** 68,000 tokens
- Base: 40,000 (full-stack development)
- Multipliers: 1.7x (testing, documentation, integrations)
- Confidence: High

### Chunking Strategy
**Approach:** Sequential 4-chunk execution
**Fits in budget:** ✅ Yes (max chunk: 20,000 tokens)

---

## Execution Sequence

### Chunk 1: Research & Planning (Priority: High)
**Estimated tokens:** 12,000
**Cumulative:** 48,000 / 200,000 (24%)

**Tasks:**
1. [ ] Analyze requirements and use cases
2. [ ] Research e-commerce best practices
3. [ ] Design system architecture
4. [ ] Plan database schema
5. [ ] Define API contracts

**Outputs:**
- requirements.md
- architecture-design.md
- database-schema.sql
- api-spec.yaml

**Success Criteria:**
- Complete architecture documented
- Database schema validated
- API contracts defined

**Checkpoint:**
```bash
npx claude-flow@alpha memory store --key "ecommerce/phase1-complete" --value "{outputs}"
npx claude-flow@alpha hooks post-task --task-id "chunk-1" --tokens-used <actual>

Chunk 2: Core Implementation (Priority: High)

Estimated tokens: 20,000 Cumulative: 68,000 / 200,000 (34%) Dependencies: Chunk 1 outputs

Tasks:

  1. Implement database models
  2. Create REST API endpoints
  3. Build authentication system
  4. Implement product catalog
  5. Create shopping cart logic

Inputs:

  • architecture-design.md
  • database-schema.sql
  • api-spec.yaml

Outputs:

  • backend/models/**/*.js
  • backend/routes/**/*.js
  • backend/middleware/auth.js

Success Criteria:

  • All API endpoints functional
  • Authentication working
  • Core features implemented

Checkpoint:

npx claude-flow@alpha memory store --key "ecommerce/phase2-complete" --value "{outputs}"

Chunk 3: Testing & Validation (Priority: Medium)

Estimated tokens: 18,000 Cumulative: 86,000 / 200,000 (43%) Dependencies: Chunk 2 outputs

Tasks:

  1. Write unit tests for models
  2. Create API integration tests
  3. Test authentication flows
  4. Validate cart operations
  5. Generate coverage report

Inputs:

  • backend/**/*.js

Outputs:

  • tests/unit/**/*.test.js
  • tests/integration/**/*.test.js
  • coverage-report.html

Success Criteria:

  • 80% code coverage

  • All critical paths tested
  • No failing tests

Checkpoint:

npx claude-flow@alpha memory store --key "ecommerce/phase3-complete" --value "{outputs}"

Chunk 4: Documentation & Polish (Priority: Low)

Estimated tokens: 18,000 Cumulative: 104,000 / 200,000 (52%) Dependencies: Chunk 3 outputs

Tasks:

  1. Write API documentation
  2. Create deployment guide
  3. Add inline code comments
  4. Generate README
  5. Final code review and polish

Inputs:

  • All previous outputs

Outputs:

  • docs/API.md
  • docs/DEPLOYMENT.md
  • README.md
  • Final polished codebase

Success Criteria:

  • Complete documentation
  • Deployment guide tested
  • Code quality passing

Final Checkpoint:

npx claude-flow@alpha memory store --key "ecommerce/complete" --value "{all-outputs}"
npx claude-flow@alpha hooks post-task --task-id "ecommerce-app" --success true

Budget Tracking

Checkpoint Estimated Actual Remaining Status
Start 0 36,000 164,000
Chunk 1 12,000 TBD TBD
Chunk 2 20,000 TBD TBD
Chunk 3 18,000 TBD TBD
Chunk 4 18,000 TBD TBD
Total 68,000 TBD TBD

Contingency Plans

If Chunk Exceeds Estimate

  1. Stop at natural breakpoint
  2. Store progress in memory
  3. Re-assess remaining budget
  4. Adjust subsequent chunks
  5. Continue or defer remaining work

If Approaching Budget Limit

  1. Prioritize critical chunks
  2. Defer low-priority work
  3. Reduce scope if necessary
  4. Document deferred items

Rollback Strategy

  • All chunks store outputs in memory
  • Can resume from any checkpoint
  • Incremental progress preserved

## Concrete Example: Real Budget Management

### Scenario
**Task:** Build authentication system with OAuth, JWT, and user management
**Budget:** 200,000 tokens, currently 45,000 used (155,000 remaining)

### Budget Analysis
```json
{
  "limit": 200000,
  "used": 45000,
  "remaining": 155000,
  "buffer": 30000,
  "available": 125000,
  "status": "healthy",
  "usagePercent": "22.5%"
}

Complexity Estimation

{
  "baseTokens": 15000,
  "multipliers": {
    "integration": 1.4,
    "testing": 1.25,
    "security": 1.3
  },
  "totalEstimate": 34125,
  "confidence": "high",
  "factors": [
    {"type": "base", "value": 15000, "reason": "Feature implementation"},
    {"type": "multiplier", "value": 1.4, "reason": "OAuth integration"},
    {"type": "multiplier", "value": 1.25, "reason": "Testing requirements"},
    {"type": "multiplier", "value": 1.3, "reason": "Security considerations"}
  ]
}

Chunking Strategy

{
  "chunks": [
    {
      "id": "chunk-1",
      "name": "OAuth Integration",
      "estimatedTokens": 12000,
      "priority": "high"
    },
    {
      "id": "chunk-2",
      "name": "JWT & Session Management",
      "estimatedTokens": 10000,
      "priority": "high",
      "dependencies": ["chunk-1"]
    },
    {
      "id": "chunk-3",
      "name": "User Management CRUD",
      "estimatedTokens": 8000,
      "priority": "medium",
      "dependencies": ["chunk-2"]
    },
    {
      "id": "chunk-4",
      "name": "Testing & Security Audit",
      "estimatedTokens": 9000,
      "priority": "high",
      "dependencies": ["chunk-1", "chunk-2", "chunk-3"]
    }
  ],
  "totalEstimate": 39000,
  "fitsInBudget": true,
  "recommendation": "Execute in 4 sequential chunks"
}

Result

  • Total estimated: 39,000 tokens (31% of available)
  • Peak chunk: 12,000 tokens (well within budget)
  • Safety margin: 86,000 tokens remaining after completion
  • Execution: Can proceed confidently with chunked approach

Integration with Development Workflow

Pre-Task Budget Check

# Before starting any significant task
npx claude-flow@alpha hooks pre-task --description "Authentication system"

# Run budget analysis (spawn planner agent)
# Agent performs budget assessment and creates execution plan

# Review plan
npx claude-flow@alpha memory retrieve --key "budget/execution-plan"

# Proceed with confidence or adjust scope

Mid-Task Monitoring

# After each chunk
npx claude-flow@alpha hooks post-task --task-id "chunk-2" --tokens-used <actual>

# Check remaining budget
npx claude-flow@alpha memory retrieve --key "token-usage/current"

# Adjust remaining chunks if needed

Post-Task Review

# After completion
npx claude-flow@alpha hooks post-task --task-id "auth-system" --success true

# Analyze accuracy
# Compare estimated vs actual for future improvements

Success Metrics

  • Budget adherence: 95%+ chunks within estimate
  • Planning accuracy: ±20% estimation error
  • Zero budget overruns: No tasks fail due to token exhaustion
  • Optimal chunking: Max chunk utilization 40-60% of available
  • Efficient execution: <15% unused budget per session

Related Skills

  • when-optimizing-prompts-use-prompt-optimization-analyzer - Reduce token waste
  • when-analyzing-skill-gaps-use-skill-gap-analyzer - Portfolio optimization
  • task-orchestrator - Multi-agent coordination

Notes

  • Run before large tasks (>20K token estimate)
  • Always maintain 15% safety buffer
  • Track actual vs estimated for learning
  • Adjust chunking based on task type
  • Store plans in memory for resumption
  • Use checkpoints for long-running work