Claude Code Plugins

Community-maintained marketplace

Feedback

when-using-advanced-swarm-use-swarm-advanced

@DNYoussef/ai-chrome-extension
0
0

Advanced swarm patterns with dynamic topology switching and self-organizing behaviors for complex multi-agent coordination

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name when-using-advanced-swarm-use-swarm-advanced
description Advanced swarm patterns with dynamic topology switching and self-organizing behaviors for complex multi-agent coordination
version 1.0.0
tags swarm, advanced, coordination, topology, self-organizing
category workflow
agents hierarchical-coordinator, mesh-coordinator, adaptive-coordinator
complexity advanced
estimated_duration 45-90 minutes
prerequisites Claude Flow installed and configured, Understanding of swarm topologies, Multi-agent coordination experience
outputs Advanced swarm infrastructure, Dynamic topology configuration, Performance metrics, Optimization reports

Advanced Swarm Coordination SOP

Overview

This skill implements advanced swarm patterns with dynamic topology switching, self-organizing behaviors, and intelligent coordination for complex multi-agent systems. It enables sophisticated swarm orchestration with adaptive topology selection and performance optimization.

Agents & Responsibilities

hierarchical-coordinator

Role: Tree-based coordination with leader-follower patterns Responsibilities:

  • Manage hierarchical swarm structures
  • Coordinate parent-child agent relationships
  • Handle task delegation cascades
  • Monitor hierarchy performance

mesh-coordinator

Role: Peer-to-peer coordination with full connectivity Responsibilities:

  • Enable direct agent-to-agent communication
  • Manage mesh network topology
  • Coordinate distributed consensus
  • Handle fault tolerance

adaptive-coordinator

Role: Dynamic topology switching based on workload Responsibilities:

  • Analyze task complexity and requirements
  • Switch topologies dynamically
  • Optimize resource allocation
  • Monitor and adapt to performance

Phase 1: Initialize Swarm Infrastructure

Objective

Establish foundation for advanced swarm coordination with proper topology and agent configuration.

Evidence-Based Validation

  • Swarm initialized with confirmed topology
  • All agents spawned successfully
  • Memory coordination active
  • Health checks passing

Scripts

# Initialize hierarchical swarm
npx claude-flow@alpha swarm init --topology hierarchical --max-agents 10

# Initialize mesh swarm
npx claude-flow@alpha swarm init --topology mesh --max-agents 8

# Initialize adaptive swarm
npx claude-flow@alpha swarm init --topology adaptive --max-agents 12 --strategy balanced

# Verify initialization
npx claude-flow@alpha swarm status --verbose

# Setup memory coordination
npx claude-flow@alpha memory store --key "swarm/topology" --value "hierarchical"
npx claude-flow@alpha memory store --key "swarm/max-agents" --value "10"

MCP Integration

// Initialize swarm with MCP
mcp__claude-flow__swarm_init({
  topology: "hierarchical",
  maxAgents: 10,
  strategy: "balanced"
})

// Alternative: Mesh topology
mcp__claude-flow__swarm_init({
  topology: "mesh",
  maxAgents: 8,
  strategy: "specialized"
})

// Alternative: Adaptive topology
mcp__claude-flow__swarm_init({
  topology: "adaptive",
  maxAgents: 12,
  strategy: "adaptive"
})

Memory Patterns

# Store swarm configuration
npx claude-flow@alpha memory store \
  --key "swarm/config" \
  --value '{"topology":"hierarchical","maxAgents":10,"strategy":"balanced"}'

# Store agent assignments
npx claude-flow@alpha memory store \
  --key "swarm/agents/coordinator-1" \
  --value '{"type":"hierarchical-coordinator","status":"active","level":0}'

Validation Criteria

  1. Swarm ID generated and confirmed
  2. Topology matches requested configuration
  3. Agent count within specified limits
  4. Memory coordination operational
  5. Health endpoint responding

Phase 2: Configure Topology

Objective

Select and configure optimal topology pattern based on task requirements and complexity.

Evidence-Based Validation

  • Topology selected based on analysis
  • Coordinator agents spawned
  • Agent connections established
  • Topology metrics baseline recorded

Scripts

# Spawn hierarchical coordinator
npx claude-flow@alpha agent spawn \
  --type coordinator \
  --role "hierarchical-coordinator" \
  --capabilities "task-delegation,hierarchy-management"

# Spawn mesh coordinator
npx claude-flow@alpha agent spawn \
  --type coordinator \
  --role "mesh-coordinator" \
  --capabilities "peer-coordination,consensus"

# Spawn adaptive coordinator
npx claude-flow@alpha agent spawn \
  --type coordinator \
  --role "adaptive-coordinator" \
  --capabilities "topology-switching,optimization"

# Configure topology
npx claude-flow@alpha swarm configure \
  --topology hierarchical \
  --levels 3 \
  --branching-factor 3

# Verify topology
npx claude-flow@alpha swarm status --show-topology

MCP Integration

// Spawn coordinator agents
mcp__claude-flow__agent_spawn({
  type: "coordinator",
  name: "hierarchical-coordinator",
  capabilities: ["task-delegation", "hierarchy-management"]
})

mcp__claude-flow__agent_spawn({
  type: "coordinator",
  name: "mesh-coordinator",
  capabilities: ["peer-coordination", "consensus"]
})

mcp__claude-flow__agent_spawn({
  type: "coordinator",
  name: "adaptive-coordinator",
  capabilities: ["topology-switching", "optimization"]
})

Topology Selection Guide

Hierarchical:

  • Best for: Clear task hierarchies, delegation workflows
  • Pros: Efficient delegation, clear authority
  • Cons: Single point of failure at root
  • Use when: Tasks have natural parent-child relationships

Mesh:

  • Best for: Peer collaboration, distributed consensus
  • Pros: High fault tolerance, no bottlenecks
  • Cons: Higher communication overhead
  • Use when: Agents need direct communication

Star:

  • Best for: Centralized coordination, simple workflows
  • Pros: Simple control, low complexity
  • Cons: Central coordinator bottleneck
  • Use when: Single coordinator can handle all traffic

Ring:

  • Best for: Sequential processing, pipeline workflows
  • Pros: Predictable flow, ordered execution
  • Cons: Latency accumulation
  • Use when: Tasks must be processed in sequence

Adaptive:

  • Best for: Dynamic workloads, variable complexity
  • Pros: Automatic optimization, flexible
  • Cons: Overhead from topology switching
  • Use when: Workload patterns vary significantly

Memory Patterns

# Store topology configuration
npx claude-flow@alpha memory store \
  --key "swarm/topology/config" \
  --value '{"type":"hierarchical","levels":3,"branchingFactor":3}'

# Store baseline metrics
npx claude-flow@alpha memory store \
  --key "swarm/metrics/baseline" \
  --value '{"latency":45,"throughput":120,"agentUtilization":0.75}'

Validation Criteria

  1. Coordinator agents active and responsive
  2. Topology structure matches configuration
  3. Agent connections verified
  4. Baseline metrics recorded
  5. No configuration errors

Phase 3: Deploy Agents

Objective

Spawn specialized agents based on topology and assign roles with proper coordination.

Evidence-Based Validation

  • All required agents spawned
  • Agent roles assigned correctly
  • Coordination protocols active
  • Agent health checks passing

Scripts

# Spawn specialized agents for hierarchical topology
npx claude-flow@alpha agent spawn --type researcher --capabilities "analysis,patterns"
npx claude-flow@alpha agent spawn --type coder --capabilities "implementation,testing"
npx claude-flow@alpha agent spawn --type reviewer --capabilities "quality,security"

# Assign agents to hierarchy levels
npx claude-flow@alpha swarm assign \
  --agent-id "agent-001" \
  --level 1 \
  --parent "coordinator-1"

# Spawn agents for mesh topology
npx claude-flow@alpha agent spawn --type analyst --peer-mode enabled
npx claude-flow@alpha agent spawn --type optimizer --peer-mode enabled

# Configure peer connections
npx claude-flow@alpha swarm connect-peers --all

# List all agents
npx claude-flow@alpha agent list --show-roles --show-connections

MCP Integration

// Spawn specialized agents
mcp__claude-flow__agent_spawn({
  type: "researcher",
  capabilities: ["analysis", "patterns", "research"]
})

mcp__claude-flow__agent_spawn({
  type: "coder",
  capabilities: ["implementation", "testing", "debugging"]
})

mcp__claude-flow__agent_spawn({
  type: "analyst",
  capabilities: ["optimization", "performance", "metrics"]
})

// Check agent status
mcp__claude-flow__agent_list({
  filter: "active"
})

mcp__claude-flow__agent_metrics({
  metric: "all"
})

Agent Assignment Patterns

Hierarchical Assignment:

# Level 0: Root coordinator
# Level 1: Department coordinators
# Level 2: Task executors
# Level 3: Specialized workers

npx claude-flow@alpha memory store \
  --key "swarm/hierarchy/level-0" \
  --value '{"agent":"coordinator-1","role":"root"}'

npx claude-flow@alpha memory store \
  --key "swarm/hierarchy/level-1" \
  --value '["agent-001","agent-002","agent-003"]'

Mesh Assignment:

# All agents are peers with direct connections
npx claude-flow@alpha memory store \
  --key "swarm/mesh/peers" \
  --value '["agent-001","agent-002","agent-003","agent-004"]'

Memory Patterns

# Store agent roster
npx claude-flow@alpha memory store \
  --key "swarm/agents/roster" \
  --value '{"total":8,"active":8,"idle":0,"roles":{"researcher":2,"coder":3,"reviewer":2,"optimizer":1}}'

# Store agent capabilities
npx claude-flow@alpha memory store \
  --key "swarm/agents/agent-001/capabilities" \
  --value '["analysis","patterns","research","documentation"]'

Validation Criteria

  1. Agent count matches requirements
  2. All agents responding to health checks
  3. Role assignments verified
  4. Coordination protocols established
  5. Memory state synchronized

Phase 4: Monitor Performance

Objective

Track swarm performance metrics, identify bottlenecks, and gather optimization data.

Evidence-Based Validation

  • Metrics collected continuously
  • Performance baseline established
  • Bottlenecks identified
  • Optimization opportunities logged

Scripts

# Monitor swarm status
npx claude-flow@alpha swarm monitor --interval 5 --duration 60

# Get agent metrics
npx claude-flow@alpha agent metrics --all --format json

# Check task performance
npx claude-flow@alpha task status --show-timing

# Analyze bottlenecks
npx claude-flow@alpha performance analyze --detect-bottlenecks

# Export metrics
npx claude-flow@alpha metrics export --output ./swarm-metrics.json

# Generate performance report
npx claude-flow@alpha performance report \
  --include-agents \
  --include-topology \
  --output ./performance-report.md

MCP Integration

// Monitor swarm in real-time
mcp__claude-flow__swarm_monitor({
  duration: 60,
  interval: 5
})

// Get comprehensive metrics
mcp__claude-flow__agent_metrics({
  metric: "all"
})

// Check task status
mcp__claude-flow__task_status({
  detailed: true
})

// Run performance benchmarks
mcp__claude-flow__benchmark_run({
  type: "swarm",
  iterations: 10
})

Key Metrics to Track

Swarm-Level Metrics:

  • Total throughput (tasks/minute)
  • Average latency per task
  • Agent utilization rate
  • Coordination overhead
  • Memory usage
  • Network latency

Agent-Level Metrics:

  • Task completion rate
  • Response time
  • Error rate
  • Resource consumption
  • Idle time percentage

Topology-Level Metrics:

  • Connection count
  • Message passing efficiency
  • Fault tolerance score
  • Scalability index

Memory Patterns

# Store performance snapshot
npx claude-flow@alpha memory store \
  --key "swarm/metrics/snapshot-$(date +%s)" \
  --value '{"throughput":145,"latency":38,"utilization":0.82,"errors":2}'

# Store bottleneck analysis
npx claude-flow@alpha memory store \
  --key "swarm/analysis/bottlenecks" \
  --value '{"coordinator-1":{"type":"high-load","severity":"medium","recommendation":"add-peer"}}'

Validation Criteria

  1. Metrics collected every 5 seconds
  2. No data loss or gaps
  3. Bottlenecks identified and documented
  4. Performance trends visible
  5. Alerts triggered for anomalies

Phase 5: Optimize Dynamically

Objective

Apply dynamic optimizations including topology switching, agent rebalancing, and resource allocation.

Evidence-Based Validation

  • Optimization strategies applied
  • Performance improvements measured
  • Topology switches successful
  • Resource allocation optimized
  • Final metrics show improvement

Scripts

# Analyze optimization opportunities
npx claude-flow@alpha performance analyze --recommend-optimizations

# Switch topology dynamically
npx claude-flow@alpha swarm reconfigure --topology mesh

# Rebalance agents
npx claude-flow@alpha swarm rebalance --strategy adaptive

# Scale swarm
npx claude-flow@alpha swarm scale --target-agents 12

# Apply neural optimizations
npx claude-flow@alpha neural train --pattern convergent

# Validate improvements
npx claude-flow@alpha performance compare \
  --baseline ./baseline-metrics.json \
  --current ./current-metrics.json

# Generate optimization report
npx claude-flow@alpha performance report \
  --show-improvements \
  --output ./optimization-report.md

MCP Integration

// Get optimization recommendations
mcp__claude-flow__benchmark_run({
  type: "swarm",
  iterations: 5
})

// Train neural patterns
mcp__claude-flow__neural_train({
  agentId: "adaptive-coordinator",
  iterations: 10
})

// Check neural patterns
mcp__claude-flow__neural_patterns({
  pattern: "all"
})

Optimization Strategies

Topology Switching:

# Switch from hierarchical to mesh if bottleneck detected
if [ "$COORDINATOR_LOAD" -gt 80 ]; then
  npx claude-flow@alpha swarm reconfigure --topology mesh
fi

# Switch to ring for sequential processing
if [ "$TASK_TYPE" == "pipeline" ]; then
  npx claude-flow@alpha swarm reconfigure --topology ring
fi

Agent Rebalancing:

# Identify underutilized agents
npx claude-flow@alpha agent metrics --filter "utilization<0.3"

# Reassign tasks from overloaded agents
npx claude-flow@alpha swarm rebalance --threshold 0.8

# Add agents if all are highly utilized
if [ "$AVG_UTILIZATION" -gt 0.9 ]; then
  npx claude-flow@alpha agent spawn --type optimizer --auto-assign
fi

Resource Allocation:

# Allocate more memory to high-priority agents
npx claude-flow@alpha agent configure \
  --agent-id "agent-001" \
  --memory-limit 2048MB

# Adjust coordination intervals
npx claude-flow@alpha swarm configure --sync-interval 3s

Memory Patterns

# Store optimization actions
npx claude-flow@alpha memory store \
  --key "swarm/optimization/actions" \
  --value '{"timestamp":"2025-10-30T10:30:00Z","action":"topology-switch","from":"hierarchical","to":"mesh","reason":"coordinator-bottleneck"}'

# Store improvement metrics
npx claude-flow@alpha memory store \
  --key "swarm/optimization/improvements" \
  --value '{"throughput":{"before":120,"after":175,"improvement":45.8},"latency":{"before":45,"after":32,"improvement":28.9}}'

Validation Criteria

  1. Performance metrics improved by ≥15%
  2. Bottlenecks eliminated or reduced
  3. Agent utilization balanced (±10%)
  4. No errors introduced by optimizations
  5. Topology switches completed successfully

Success Criteria

Overall Validation

  • Swarm infrastructure stable and operational
  • Optimal topology selected and configured
  • All agents deployed and coordinated
  • Performance monitored and optimized
  • Improvements measured and validated

Performance Targets

  • Throughput increase: ≥20%
  • Latency reduction: ≥15%
  • Agent utilization: 70-90%
  • Error rate: <2%
  • Coordination overhead: <10%

Common Issues & Solutions

Issue: Coordinator Bottleneck

Symptoms: High latency, coordinator CPU >90% Solution: Switch to mesh topology or add peer coordinators

Issue: Agent Underutilization

Symptoms: Many agents idle, unbalanced load Solution: Rebalance task assignment, reduce agent count

Issue: Topology Switch Failures

Symptoms: Errors during reconfiguration, lost connections Solution: Drain tasks before switching, validate agent states

Issue: Memory Synchronization Lag

Symptoms: Agents have inconsistent state Solution: Increase sync frequency, use distributed consensus

Best Practices

  1. Start Simple: Begin with hierarchical or star topology
  2. Monitor First: Collect baseline metrics before optimizing
  3. Gradual Scaling: Add agents incrementally
  4. Test Topology Switches: Validate in non-production first
  5. Document Patterns: Record successful configurations
  6. Use Neural Training: Improve pattern recognition
  7. Enable Auto-Healing: Configure self-recovery mechanisms
  8. Regular Health Checks: Monitor agent health continuously

Integration Points

With Other Skills

  • swarm-orchestration: For complex task coordination
  • performance-analysis: For deep performance insights
  • hive-mind: For collective intelligence patterns
  • cascade-orchestrator: For workflow chaining

With External Systems

  • GitHub Actions for CI/CD integration
  • Prometheus for metrics collection
  • Grafana for visualization
  • Slack/Discord for alerts

Next Steps

After completing this skill:

  1. Explore specific topology patterns in depth
  2. Implement custom coordination protocols
  3. Integrate with monitoring systems
  4. Create domain-specific swarm templates
  5. Experiment with hybrid topologies

References