| name | slash-command-encoder |
| description | Creates ergonomic slash commands (/command) that provide fast, unambiguous access to micro-skills, cascades, and agents. Enhanced with auto-discovery, intelligent routing, parameter validation, and command chaining. Generates comprehensive command catalogs for all installed skills with multi-model integration. |
| tags | commands, interface, ergonomics, auto-discovery, composition, tier-3 |
| version | 2.0.0 |
| category | orchestration |
| author | ruv |
Orchestration Skill Guidelines
When to Use This Skill
- Multi-stage workflows requiring sequential, parallel, or conditional execution
- Complex pipelines coordinating multiple micro-skills or agents
- Iterative processes with Codex sandbox testing and auto-fix loops
- Multi-model routing requiring intelligent AI selection per stage
- Production workflows needing GitHub integration and memory persistence
When NOT to Use This Skill
- Single-agent tasks with no coordination requirements
- Simple sequential work that doesn't need stage management
- Trivial operations completing in <5 minutes
- Pure research without implementation stages
Success Criteria
- All stages complete with 100% success rate
- Dependency resolution with no circular dependencies
- Model routing optimal for each stage (Gemini/Codex/Claude)
- Memory persistence maintained across all stages
- No orphaned stages - all stages tracked and completed
Edge Cases to Handle
- Stage failure mid-cascade - Implement retry with exponential backoff
- Circular dependencies - Validate DAG structure before execution
- Model unavailability - Have fallback model selection per stage
- Memory overflow - Implement stage result compression
- Timeout on long stages - Configure per-stage timeout limits
Guardrails (NEVER Violate)
- NEVER lose stage state - Persist after each stage completion
- ALWAYS validate dependencies - Check DAG acyclic before execution
- ALWAYS track cascade progress - Update memory with real-time status
- NEVER skip error handling - Every stage needs try/catch with fallback
- ALWAYS cleanup on failure - Release resources, clear temp state
Evidence-Based Validation
- Verify stage outputs - Check actual results vs expected schema
- Validate data flow - Confirm outputs passed correctly to next stage
- Check model routing - Verify correct AI used per stage requirements
- Measure cascade performance - Track execution time vs estimates
- Audit memory usage - Ensure no memory leaks across stages
Slash Command Encoder (Enhanced)
Overview
Creates fast, scriptable /command interfaces for micro-skills, cascades, and agents. This enhanced version includes automatic skill discovery, intelligent command generation, parameter validation, multi-model routing, and command chaining patterns.
Philosophy: Expert Efficiency
Command Line UX for AI: Expert users benefit from fast, precise, scriptable interfaces over natural language when performing repeated operations.
Enhanced Capabilities:
- Auto-Discovery: Scans and catalogs all installed skills automatically
- Intelligent Routing: Commands invoke optimal AI/agent for task
- Parameter Validation: Type-checked, auto-completed parameters
- Command Chaining: Compose commands into pipelines
- Multi-Model Integration: Direct access to Gemini/Codex via commands
Key Principles:
- Fast and unambiguous invocation
- Self-documenting through naming
- Composable and scriptable
- Type-safe parameter handling
- Muscle memory for power users
When to Create Slash Commands
✅ Perfect For:
- Operations performed repeatedly (daily/weekly)
- Workflows that need exact parameters
- Tasks requiring scriptable automation
- Commands that compose into pipelines
- Expert user shortcuts
❌ Don't Use For:
- One-off exploratory tasks
- Operations needing natural language nuance
- Tasks better suited to interactive dialogue
Enhanced Creation Workflow
Step 1: Auto-Discovery Phase
Scan Installed Skills:
# Discovery algorithm
scan_directories:
- ~/.claude/skills/*/SKILL.md
- .claude/skills/*/SKILL.md
extract_metadata:
- name (command base)
- description (help text)
- inputs (parameters)
- outputs (return types)
- integration_points (routing)
Catalog Generation:
discovered_skills:
micro_skills: [extract-data, validate-api, refactor-code, ...]
cascades: [audit-pipeline, code-quality-swarm, ...]
agents: [root-cause-analyzer, code-reviewer, ...]
multi_model: [gemini-megacontext, codex-auto, ...]
Step 2: Command Design (Enhanced)
A. Naming Conventions
Category Prefixes:
# Data operations
/extract-json, /validate-csv, /transform-xml
# Code operations
/lint-python, /test-coverage, /refactor-imports
# Agent invocation
/agent-rca, /agent-reviewer, /agent-architect
# Multi-model
/gemini-search, /codex-auto, /claude-reason
# Workflows
/audit-pipeline, /deploy-prod, /quality-check
Naming Rules:
- Verb-noun pattern:
/validate-api,/extract-data - Agent prefix:
/agent-<specialty> - Model prefix:
/gemini-*,/codex-* - Workflow descriptive:
/audit-pipeline - Max 3 words, hyphenated
B. Parameter Design
Parameter Types:
positional:
- file_path (required, validated)
- target (required, validated)
flags:
--strict: boolean
--format: enum[json, csv, xml]
--output: file_path
options:
--config: json_object
--schema: file_path
--model: enum[claude, gemini, codex]
Validation Schema:
interface CommandParameter {
name: string
type: 'string' | 'number' | 'boolean' | 'file_path' | 'enum'
required: boolean
default?: any
validation?: RegExp | ((value: any) => boolean)
description: string
completion?: () => string[] // Auto-complete options
}
C. Multi-Model Routing
Model Selection Flags:
# Explicit model selection
/analyze src/ --model gemini-megacontext # Large context
/prototype feature.spec --model codex-auto # Rapid prototyping
/reason bug-report.md --model codex-reasoning # Alternative view
/review code.js --model claude # Best reasoning (default)
# Auto-select based on task
/analyze-large-codebase # Auto-routes to gemini-megacontext
/rapid-prototype # Auto-routes to codex-auto
/search-current-info # Auto-routes to gemini-search
Step 3: Command Implementation Structure
Command Definition Template:
command:
name: /command-name
version: 1.0.0
description: |
Brief description of what this command does
category: data | code | agent | workflow | multi-model
parameters:
- name: input
type: file_path
required: true
validation: file_exists
description: Input file to process
- name: --strict
type: boolean
default: false
description: Enable strict validation
- name: --model
type: enum
options: [claude, gemini-megacontext, gemini-search, codex-auto]
default: auto-select
description: AI model to use
routing:
type: micro-skill | cascade | agent | multi-model
target: skill-name | cascade-name | agent-name
model_selection: auto | explicit
binding:
parameter_mapping:
file: ${input}
strictness: ${--strict}
model: ${--model}
output:
format: json | text | file
validation: schema | none
examples:
- command: /command-name input.json --strict
description: Process input.json with strict validation
composition:
chainable: true
pipe_output: stdout
pipe_input: stdin
Step 4: Command Chaining & Composition
Pipeline Patterns:
# Sequential pipeline
/extract data.json | /validate --strict | /transform --format csv > output.csv
# Parallel fan-out
/analyze src/ --parallel [/lint + /security-scan + /test-coverage] | /merge-reports
# Conditional branching
/validate input.json && /deploy-prod || /generate-error-report
# Multi-stage workflow
/audit-pipeline src/ \
--phase theater-detection \
--phase functionality-audit --model codex-auto \
--phase style-audit \
--output report.json
Composition Interface:
interface ChainableCommand {
execute: (input: any) => Promise<CommandResult>
pipe: (next: Command) => ChainableCommand
parallel: (commands: Command[]) => ParallelCommand
conditional: (condition: boolean, ifTrue: Command, ifFalse: Command) => ConditionalCommand
}
Step 5: Auto-Completion & Help
Completion System:
# File path completion
/validate <TAB> # Shows files matching pattern
# Parameter completion
/analyze --<TAB> # Shows available flags
# Model completion
/analyze --model <TAB> # Shows [claude, gemini-megacontext, codex-auto, ...]
# Command discovery
/<TAB> # Shows all available commands by category
Help Generation:
/help command-name
Command: /validate-api
Version: 1.0.0
Category: Data Operations
Description:
Validates API responses against OpenAPI schemas using specialist validation agent
Usage:
/validate-api <file> [--schema <schema_file>] [--strict] [--model <model>]
Parameters:
file Path to API response file (required)
--schema FILE OpenAPI schema file (default: auto-detect)
--strict Enable strict validation mode
--model MODEL AI model [claude|gemini|codex] (default: auto)
Examples:
/validate-api response.json
/validate-api response.json --schema openapi.yaml --strict
/validate-api response.json --model gemini-megacontext
Chains with:
/extract-data → /validate-api → /transform-data
See also:
/validate-csv, /validate-json, /agent-validator
Enhanced Command Templates
1. Data Processing Commands
Template:
command: /process-<datatype>
category: data
routing:
type: micro-skill
target: process-<datatype>
parameters:
- input: file_path (required)
- --format: enum[json, csv, xml]
- --schema: file_path
- --output: file_path
- --model: enum[claude, gemini, codex]
examples:
/extract-json data.json --schema schema.json
/validate-csv data.csv --strict --output report.json
/transform-xml data.xml --format json
Generated Commands:
/extract-json,/extract-csv,/extract-xml/validate-json,/validate-csv,/validate-api/transform-json,/transform-csv,/transform-xml
2. Code Operation Commands
Template:
command: /code-<operation>
category: code
routing:
type: micro-skill | cascade
target: code-<operation>
parameters:
- path: file_path | directory (required)
- --language: enum[python, javascript, typescript, ...]
- --config: file_path
- --fix: boolean (auto-fix issues)
- --model: enum[claude, codex-auto]
examples:
/lint-code src/ --language python --fix
/test-coverage src/ --output coverage-report.json
/refactor-imports src/ --model codex-auto
Generated Commands:
/lint-code,/lint-python,/lint-javascript/test-coverage,/test-suite,/test-watch/refactor-imports,/refactor-di,/refactor-patterns/analyze-complexity,/analyze-security,/analyze-performance
3. Agent Invocation Commands
Template:
command: /agent-<specialty>
category: agent
routing:
type: agent
target: <specialty>-agent
model_selection: auto
parameters:
- task: string (required, detailed task description)
- --context: file_path | directory
- --depth: enum[shallow, normal, deep]
- --model: enum[claude, gemini, codex]
examples:
/agent-rca "Debug intermittent timeout in API" --context src/api/
/agent-reviewer src/feature.js --depth deep
/agent-architect "Design user authentication system" --context docs/
Generated Commands:
/agent-rca→ Root Cause Analyzer/agent-reviewer→ Code Reviewer/agent-architect→ System Architect/agent-security→ Security Auditor/agent-performance→ Performance Optimizer
4. Multi-Model Commands
Template:
command: /<model>-<capability>
category: multi-model
routing:
type: multi-model
target: <model>-cli
model: <model>
parameters:
- task: string (required)
- --context: file_path | directory
- --output: file_path
examples:
/gemini-megacontext "Analyze entire 30K line codebase" --context src/
/gemini-search "What are React 19 breaking changes?"
/gemini-media "Generate architecture diagram" --output diagram.png
/codex-auto "Prototype user auth feature" --context spec.md
/codex-reasoning "Alternative algorithm for sorting" --context src/sort.js
Generated Commands:
/gemini-megacontext→ 1M token context analysis/gemini-search→ Real-time web information/gemini-media→ Image/video generation/gemini-extensions→ Figma, Stripe, Postman integration/codex-auto→ Full Auto sandboxed prototyping/codex-reasoning→ GPT-5-Codex alternative reasoning/claude-reason→ Best overall reasoning (default)
5. Workflow/Cascade Commands
Template:
command: /<workflow-name>
category: workflow
routing:
type: cascade
target: <workflow-name>-cascade
parameters:
- target: file_path | directory (required)
- --phase: enum[all, phase1, phase2, phase3]
- --parallel: boolean (enable parallel execution)
- --model: enum[auto, claude, gemini, codex]
- --output: file_path
examples:
/audit-pipeline src/ --output audit-report.json
/quality-check src/ --parallel --model auto
/deploy-prod --phase all --output deployment-log.txt
Generated Commands:
/audit-pipeline→ theater → functionality → style/quality-check→ [lint + security + coverage] → report/deploy-prod→ validate → test → build → deploy/modernize-legacy→ analyze → refactor → test → document
Integration with Existing Skills
Command Catalog for Current Skills (14 Total)
Audit Skills (4 commands):
/theater-detect src/ # Theater detection audit
/functionality-audit src/ # Functionality audit with Codex iteration
/style-audit src/ # Style and quality audit
/audit-pipeline src/ # All 3 phases sequentially
Multi-Model Skills (7 commands):
/gemini-megacontext "task" # 1M token context
/gemini-search "query" # Real-time web info
/gemini-media "description" # Generate images/videos
/gemini-extensions "task" # Figma, Stripe, etc.
/codex-auto "task" # Full Auto prototyping
/codex-reasoning "problem" # GPT-5-Codex alternative view
/multi-model "task" # Intelligent orchestrator
Root Cause Analysis (1 command):
/agent-rca "problem" # Root cause analysis agent
Three-Tier Architecture (2 commands):
/create-micro-skill "task" # Create new micro-skill
/create-cascade "workflow" # Create new cascade
Command Composition Examples
Example 1: Complete Quality Pipeline:
# Sequential quality checks with multi-model routing
/audit-pipeline src/ \
--phase theater-detection \
--phase functionality-audit --model codex-auto \
--phase style-audit --model claude \
--output quality-report.json
Example 2: Root Cause + Fix Workflow:
# Analyze problem, then auto-fix with Codex
/agent-rca "Intermittent timeout in API" --context src/api/ | \
/codex-auto "Fix identified root cause" --sandbox true
Example 3: Research + Prototype + Test:
# Multi-model cascade
/gemini-search "Best practices for React 19" | \
/codex-auto "Prototype React 19 feature using best practices" | \
/functionality-audit --model codex-auto
Example 4: Parallel Quality Checks:
# Fan-out to multiple tools
/quality-check src/ --parallel [
/theater-detect,
/lint-code,
/test-coverage,
/analyze-security
] | /merge-reports --output comprehensive-report.json
Integration with Claude Code Command System
Command Registration
Auto-Registration Pattern:
# On skill installation, auto-register commands
.claude/skills/*/SKILL.md → parse → generate → .claude/commands/<command>.md
# Command file format
.claude/commands/validate-api.md:
---
name: validate-api
binding: micro-skill:validate-api
---
Validate API responses against OpenAPI schemas.
Usage: /validate-api <file> [--schema <schema>] [--strict]
Command Discovery
Discovery Mechanism:
on_startup:
- scan ~/.claude/skills/*/SKILL.md
- scan .claude/skills/*/SKILL.md
- parse metadata (name, inputs, category)
- generate command definitions
- register with Claude Code CLI
- build auto-completion index
on_update:
- watch for skill changes
- regenerate affected commands
- update completion index
Parameter Validation
Validation Pipeline:
interface ValidationPipeline {
// Type checking
validateTypes: (params: any) => ValidationResult
// File existence
validatePaths: (paths: string[]) => ValidationResult
// Enum constraints
validateEnums: (values: any) => ValidationResult
// Custom validators
validateCustom: (value: any, validator: Function) => ValidationResult
// Aggregate results
aggregate: () => ValidationResult
}
// Before command execution
const result = validate(command, parameters)
if (!result.valid) {
throw new ValidationError(result.errors)
}
Command Chaining Patterns
Pattern 1: Sequential Pipeline
# Data processing pipeline
/extract-json data.json | \
/validate-api --schema openapi.yaml | \
/transform-json --format csv | \
/generate-report --template summary
Pattern 2: Parallel Fan-Out
# Parallel quality checks
/analyze src/ --parallel [
/lint-code,
/security-scan --deep,
/test-coverage,
/complexity-analysis
] | /merge-reports --format html
Pattern 3: Conditional Branching
# Deploy based on quality
/validate-quality src/ && \
/deploy-prod --environment production || \
/generate-quality-report --notify team
Pattern 4: Iterative Refinement
# Refactor until quality threshold met
while [[ $(quality-score) -lt 85 ]]; do
/refactor-code src/ --model codex-auto
/test-coverage src/
done
Pattern 5: Multi-Model Cascade
# Research → Design → Implement → Test
/gemini-search "Best practices for feature X" | \
/agent-architect "Design feature X with best practices" | \
/codex-auto "Implement designed feature" | \
/functionality-audit --model codex-auto | \
/style-audit
Best Practices (Enhanced)
Command Design
- ✅ Use clear, consistent naming (verb-noun)
- ✅ Limit positional parameters (max 2-3)
- ✅ Provide sensible defaults
- ✅ Enable command chaining
- ✅ Include comprehensive help
- ✅ Support model selection for flexibility
Parameter Design
- ✅ Type-safe with validation
- ✅ Auto-completion enabled
- ✅ Required vs optional clearly marked
- ✅ Enum constraints for options
- ✅ File path validation
Integration Design
- ✅ Clean routing to skills/agents
- ✅ Standardized output formats
- ✅ Composable interfaces
- ✅ Error handling with clear messages
- ✅ Progress reporting for long operations
Working with Slash Command Encoder
Invocation: "Create slash commands for [skill/cascade/agent] with [parameters] that [composition pattern]"
The encoder will:
- Auto-discover all installed skills
- Design command naming and parameters
- Create validation schemas
- Generate command definitions
- Register with Claude Code CLI
- Build auto-completion index
- Produce comprehensive command catalog
Advanced Features:
- Automatic skill discovery and catalog generation
- Intelligent multi-model routing
- Type-safe parameter validation
- Command chaining and composition
- Auto-completion for parameters
- Comprehensive help generation
- Integration with Claude Code CLI
Integration:
- Works with micro-skill-creator for skill-to-command generation
- Works with cascade-orchestrator for workflow commands
- Works with multi-model system for AI routing
- Works with audit-pipeline for quality commands
- Works with root-cause-analyzer for debugging commands
Version 2.0 Enhancements:
- Auto-discovery of all installed skills
- Multi-model intelligent routing
- Command chaining and composition patterns
- Type-safe parameter validation
- Auto-completion system
- Comprehensive command catalog generation
- Integration with Gemini/Codex CLIs
- Enhanced help and documentation generation
Core Principles
Slash Command Encoder operates on 3 fundamental principles:
Principle 1: Expert Efficiency Through Command Line UX
Command-line interfaces provide power users with fast, precise, and scriptable access to complex AI operations, prioritizing muscle memory over natural language ambiguity.
In practice:
- Design commands with verb-noun patterns for immediate recognition
- Enable command chaining for pipeline composition
- Provide comprehensive auto-completion for parameter discovery
- Maintain consistent naming across all command categories
Principle 2: Auto-Discovery and Intelligent Routing
Commands are automatically generated from installed skills, with intelligent routing to optimal AI models and agents based on task requirements.
In practice:
- Scan skill directories on startup to build comprehensive command catalogs
- Map command parameters directly to skill inputs for seamless binding
- Route commands to appropriate models (Claude, Gemini, Codex) based on capability needs
- Update command registry automatically when skills are added or modified
Principle 3: Type Safety and Composability
Commands enforce type-safe parameters with validation and support compositional patterns for complex workflows.
In practice:
- Validate all parameters against defined schemas before execution
- Enable pipeline composition with standardized input/output formats
- Support parallel execution patterns for independent operations
- Provide clear error messages when validation fails
Common Anti-Patterns
| Anti-Pattern | Problem | Solution |
|---|---|---|
| Natural Language Commands | Commands like /please analyze this file carefully defeat muscle memory and scriptability, creating ambiguous interfaces that cannot be chained or automated |
Use precise verb-noun patterns like /analyze-code src/file.js --strict with explicit parameters for fast, scriptable invocation |
| Manual Command Registration | Manually writing command definitions for each skill creates maintenance burden, drift from source skills, and missing commands when skills are added | Use auto-discovery scanning skill directories on startup, generating commands from SKILL.md metadata with automatic registry updates |
| Stringly-Typed Parameters | Accepting arbitrary string parameters without validation causes runtime errors, confusing failure modes, and prevents auto-completion assistance | Implement TypeScript-style schemas with enum constraints, file path validation, and type checking before execution with helpful error messages |
Conclusion
Slash Command Encoder provides fast, scriptable interfaces for micro-skills, cascades, and agents through ergonomic command design.
Key takeaways:
- Expert users benefit from command-line efficiency over natural language for repeated operations
- Auto-discovery eliminates manual command registration and keeps catalogs current
- Type-safe parameters with validation prevent runtime errors and improve reliability
- Command chaining enables powerful workflow composition from simple building blocks
Use this skill when operations are performed repeatedly, require exact parameters, or need to be composed into automated pipelines. Avoid for one-off exploratory tasks or operations requiring natural language nuance.