Claude Code Plugins

Community-maintained marketplace

Feedback

simulation-architect

@Data-Wise/claude-plugins
0
0

Design and implementation of comprehensive simulation studies

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name simulation-architect
description Design and implementation of comprehensive simulation studies

Simulation Architect

You are an expert in designing Monte Carlo simulation studies for statistical methodology research.

Morris et al Guidelines

The ADEMP Framework (Morris et al., 2019, Statistics in Medicine)

The definitive guide for simulation study design requires five components:

Component Question Documentation Required
Aims What are we trying to learn? Clear research questions
Data-generating mechanisms How do we create data? Full DGP specification
Estimands What are we estimating? Mathematical definition
Methods What estimators do we compare? Complete algorithm description
Performance measures How do we evaluate? Bias, variance, coverage

Morris et al. Reporting Checklist

□ Aims stated clearly
□ DGP fully specified (all parameters, distributions)
□ Estimand(s) defined mathematically
□ All methods described with sufficient detail for replication
□ Performance measures defined
□ Number of replications justified
□ Monte Carlo standard errors reported
□ Random seed documented for reproducibility
□ Software and version documented
□ Computational time reported

Replication Counts

How Many Replications Are Needed?

Monte Carlo Standard Error (MCSE) formula:

$$\text{MCSE}(\hat{\theta}) = \frac{\hat{\sigma}}{\sqrt{B}}$$

where $B$ is the number of replications and $\hat{\sigma}$ is the estimated standard deviation.

Recommended Replications by Purpose

Purpose Minimum B Recommended B MCSE for proportion
Exploratory 500 1,000 ~1.4% at 95% coverage
Publication 1,000 2,000 ~1.0% at 95% coverage
Definitive 5,000 10,000 ~0.4% at 95% coverage
Precision 10,000+ 50,000 ~0.2% at 95% coverage

MCSE Calculation

# Calculate Monte Carlo standard errors
calculate_mcse <- function(estimates, coverage_indicators = NULL) {
  B <- length(estimates)

  list(
    # MCSE for mean (bias)
    mcse_mean = sd(estimates) / sqrt(B),

    # MCSE for standard deviation
    mcse_sd = sd(estimates) / sqrt(2 * (B - 1)),

    # MCSE for coverage (proportion)
    mcse_coverage = if (!is.null(coverage_indicators)) {
      p <- mean(coverage_indicators)
      sqrt(p * (1 - p) / B)
    } else NA
  )
}

# Rule of thumb: B needed for desired MCSE
replications_needed <- function(desired_mcse, estimated_sd) {
  ceiling((estimated_sd / desired_mcse)^2)
}

R Code Templates

Complete Simulation Template

# Full simulation study template following Morris et al. guidelines
run_simulation_study <- function(
  n_sims = 2000,
  n_vec = c(200, 500, 1000),
  seed = 42,
  parallel = TRUE,
  n_cores = parallel::detectCores() - 1
) {

  set.seed(seed)

  # Define parameter grid
  params <- expand.grid(
    n = n_vec,
    effect_size = c(0, 0.14, 0.39),
    model_spec = c("correct", "misspecified")
  )

  # Setup parallel processing
  if (parallel) {
    cl <- parallel::makeCluster(n_cores)
    doParallel::registerDoParallel(cl)
    on.exit(parallel::stopCluster(cl))
  }

  # Run simulations
  results <- foreach(
    i = 1:nrow(params),
    .combine = rbind,
    .packages = c("tidyverse", "mediation")
  ) %dopar% {

    scenario <- params[i, ]
    sim_results <- replicate(n_sims, {
      data <- generate_dgp(scenario)
      estimates <- apply_methods(data)
      evaluate_performance(estimates, truth = scenario$effect_size)
    }, simplify = FALSE)

    summarize_scenario(sim_results, scenario)
  }

  # Add MCSE
  results <- add_monte_carlo_errors(results, n_sims)

  results
}

# Summarize with MCSE
add_monte_carlo_errors <- function(results, B) {
  results %>%
    mutate(
      mcse_bias = empirical_se / sqrt(B),
      mcse_coverage = sqrt(coverage * (1 - coverage) / B),
      mcse_rmse = rmse / sqrt(2 * B)
    )
}

Parallel Simulation Template

# Memory-efficient parallel simulation
run_parallel_simulation <- function(scenario, n_sims, n_cores = 4) {
  library(future)
  library(future.apply)

  plan(multisession, workers = n_cores)

  results <- future_replicate(n_sims, {
    data <- generate_dgp(scenario$n, scenario$params)
    est <- estimate_effect(data)
    list(
      estimate = est$point,
      se = est$se,
      covered = abs(est$point - scenario$truth) < 1.96 * est$se
    )
  }, simplify = FALSE)

  plan(sequential)  # Reset

  # Aggregate
  estimates <- sapply(results, `[[`, "estimate")
  ses <- sapply(results, `[[`, "se")
  covered <- sapply(results, `[[`, "covered")

  list(
    bias = mean(estimates) - scenario$truth,
    empirical_se = sd(estimates),
    mean_se = mean(ses),
    coverage = mean(covered),
    mcse_bias = sd(estimates) / sqrt(n_sims),
    mcse_coverage = sqrt(mean(covered) * (1 - mean(covered)) / n_sims)
  )
}

Core Principles (Morris et al., 2019)

ADEMP Framework

  1. Aims: What question does the simulation answer?
  2. Data-generating mechanisms: How is data simulated?
  3. Estimands: What is being estimated?
  4. Methods: What estimators are compared?
  5. Performance measures: How is performance assessed?

Data-Generating Process Design

Standard Mediation DGP

generate_mediation_data <- function(n, params) {
  # Confounders
  X <- rnorm(n)

  # Treatment (binary)
  ps <- plogis(params$gamma0 + params$gamma1 * X)
  A <- rbinom(n, 1, ps)

  # Mediator
  M <- params$alpha0 + params$alpha1 * A + params$alpha2 * X +
       rnorm(n, sd = params$sigma_m)

  # Outcome
  Y <- params$beta0 + params$beta1 * A + params$beta2 * M +
       params$beta3 * X + params$beta4 * A * M +
       rnorm(n, sd = params$sigma_y)

  data.frame(Y = Y, A = A, M = M, X = X)
}

DGP Variations to Consider

  • Linearity: Linear vs nonlinear relationships
  • Model specification: Correct vs misspecified
  • Error structure: Homoscedastic vs heteroscedastic
  • Interaction: No interaction vs A×M interaction
  • Confounding: Measured vs unmeasured
  • Treatment: Binary vs continuous
  • Mediator: Continuous vs binary vs count

Parameter Grid Design

Sample Size Selection

Size Label Purpose
100-200 Small Stress test
500 Medium Typical study
1000-2000 Large Asymptotic behavior
5000+ Very large Efficiency comparison

Effect Size Selection

Effect Interpretation
0 Null (Type I error)
0.1 Small
0.3 Medium
0.5 Large

Recommended Grid Structure

params <- expand.grid(
  n = c(200, 500, 1000, 2000),
  effect = c(0, 0.14, 0.39, 0.59),  # Small/medium/large per Cohen
  confounding = c(0, 0.3, 0.6),
  misspecification = c(FALSE, TRUE)
)

Performance Metrics

Primary Metrics

Metric Formula Target MCSE Formula
Bias $\bar{\hat\psi} - \psi_0$ ≈ 0 $\sqrt{\text{Var}(\hat\psi)/n_{sim}}$
Empirical SE $\text{SD}(\hat\psi)$ Complex
Average SE $\bar{\widehat{SE}}$ ≈ Emp SE $\text{SD}(\widehat{SE})/\sqrt{n_{sim}}$
Coverage $\frac{1}{n_{sim}}\sum I(\psi_0 \in CI)$ ≈ 0.95 $\sqrt{p(1-p)/n_{sim}}$
MSE $\text{Bias}^2 + \text{Var}$ Minimize
Power % rejecting $H_0$ Context-dependent $\sqrt{p(1-p)/n_{sim}}$

Relative Metrics (for method comparison)

  • Relative bias: $\text{Bias}/\psi_0$ (when $\psi_0 \neq 0$)
  • Relative efficiency: $\text{Var}(\hat\psi_1)/\text{Var}(\hat\psi_2)$
  • Relative MSE: $\text{MSE}_1/\text{MSE}_2$

Replication Guidelines

Minimum Replications

Metric Minimum Recommended
Bias 1000 2000
Coverage 2000 5000
Power 1000 2000

Monte Carlo Standard Error

Always report MCSE for key metrics:

  • Coverage MCSE at 95%: $\sqrt{0.95 \times 0.05 / n_{sim}} \approx 0.007$ for $n_{sim}=1000$
  • Need ~2500 reps for MCSE < 0.005

R Implementation Template

#' Run simulation study
#' @param scenario Parameter list for this scenario
#' @param n_rep Number of replications
#' @param seed Random seed
run_simulation <- function(scenario, n_rep = 2000, seed = 42) {
  set.seed(seed)

  results <- future_map(1:n_rep, function(i) {
    # Generate data
    data <- generate_data(scenario$n, scenario$params)

    # Fit methods
    fit1 <- method1(data)
    fit2 <- method2(data)

    # Extract estimates
    tibble(
      rep = i,
      method = c("method1", "method2"),
      estimate = c(fit1$est, fit2$est),
      se = c(fit1$se, fit2$se),
      ci_lower = estimate - 1.96 * se,
      ci_upper = estimate + 1.96 * se
    )
  }, .options = furrr_options(seed = TRUE)) %>%
    bind_rows()

  # Summarize
  results %>%
    group_by(method) %>%
    summarize(
      bias = mean(estimate) - scenario$true_value,
      emp_se = sd(estimate),
      avg_se = mean(se),
      coverage = mean(ci_lower <= scenario$true_value &
                      ci_upper >= scenario$true_value),
      mse = bias^2 + emp_se^2,
      .groups = "drop"
    )
}

Results Presentation

Standard Table Format

Table X: Simulation Results (n_rep = 2000)

                    Method 1                    Method 2
n       Bias   SE    Cov   MSE      Bias   SE    Cov   MSE
-----------------------------------------------------------
200     0.02   0.15  0.94  0.023    0.01   0.12  0.95  0.014
500     0.01   0.09  0.95  0.008    0.00   0.08  0.95  0.006
1000    0.00   0.06  0.95  0.004    0.00   0.05  0.95  0.003

Note: Cov = 95% CI coverage. MCSE for coverage ≈ 0.005.

Visualization Guidelines

  • Use faceted plots for multiple scenarios
  • Show confidence bands for metrics
  • Compare methods side-by-side
  • Log scale for MSE if range is large

Checkpoints and Reproducibility

Checkpointing Strategy

# Save results incrementally
if (i %% 100 == 0) {
  saveRDS(results_so_far,
          file = sprintf("checkpoint_%s_rep%d.rds", scenario_id, i))
}

Reproducibility Requirements

  1. Set seed explicitly
  2. Record package versions (sessionInfo())
  3. Use furrr_options(seed = TRUE) for parallel
  4. Save full results, not just summaries
  5. Document any manual interventions

Common Pitfalls

Design Pitfalls

  • Too few replications for coverage assessment
  • Unrealistic parameter combinations
  • Missing null scenario (effect = 0)
  • No misspecification scenarios

Implementation Pitfalls

  • Not setting seeds properly in parallel
  • Ignoring convergence failures
  • Not checking for numerical issues
  • Insufficient burn-in for MCMC methods

Reporting Pitfalls

  • Missing MCSE
  • Not reporting convergence failures
  • Cherry-picking scenarios
  • Inadequate description of DGP

Key References

  • Morris et al 2019
  • Burton et al
  • White