Claude Code Plugins

Community-maintained marketplace

Feedback

jupyter-notebook-assistant

@Dexploarer/claudius-skills
1
0

Organizes, cleans, and optimizes Jupyter notebooks - removes empty cells, adds structure, extracts functions, generates documentation. Use when user asks to "clean notebook", "organize jupyter", "refactor notebook", or "jupyter best practices".

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name jupyter-notebook-assistant
description Organizes, cleans, and optimizes Jupyter notebooks - removes empty cells, adds structure, extracts functions, generates documentation. Use when user asks to "clean notebook", "organize jupyter", "refactor notebook", or "jupyter best practices".
allowed-tools Read, Write, Bash

Jupyter Notebook Assistant

Cleans, organizes, and optimizes Jupyter notebooks for better readability and maintainability.

When to Use

  • "Clean up this Jupyter notebook"
  • "Organize my notebook"
  • "Refactor Jupyter code"
  • "Extract functions from notebook"
  • "Add structure to notebook"

Instructions

1. Analyze Notebook

Read and parse .ipynb file:

import json

with open('notebook.ipynb') as f:
    nb = json.load(f)

# Count cells
total_cells = len(nb['cells'])
code_cells = sum(1 for c in nb['cells'] if c['cell_type'] == 'code')
markdown_cells = sum(1 for c in nb['cells'] if c['cell_type'] == 'markdown')
empty_cells = sum(1 for c in nb['cells'] if not c['source'])

print(f"Total cells: {total_cells}")
print(f"Code cells: {code_cells}")
print(f"Markdown cells: {markdown_cells}")
print(f"Empty cells: {empty_cells}")

2. Common Cleanup Tasks

Remove empty cells:

nb['cells'] = [c for c in nb['cells'] if c['source']]

Clear outputs:

for cell in nb['cells']:
    if cell['cell_type'] == 'code':
        cell['outputs'] = []
        cell['execution_count'] = None

Remove trailing whitespace:

for cell in nb['cells']:
    cell['source'] = [line.rstrip() + '\n' for line in cell['source']]

3. Add Structure

Add section headers:

# Detect major sections and add markdown headers
sections = [
    "# Setup and Imports",
    "# Data Loading",
    "# Data Exploration",
    "# Data Preprocessing",
    "# Model Training",
    "# Evaluation",
    "# Visualization",
    "# Conclusion"
]

# Insert markdown cells at appropriate positions

Add table of contents:

# Table of Contents

1. [Setup and Imports](#setup)
2. [Data Loading](#data)
3. [Data Exploration](#explore)
4. [Model Training](#train)
5. [Evaluation](#eval)
6. [Conclusions](#conclusion)

4. Extract Reusable Functions

Identify repeated code patterns:

# Before: Repeated in multiple cells
df = pd.read_csv('data.csv')
df = df.dropna()
df = df[df['value'] > 0]

# After: Extract to function
def load_and_clean_data(filename):
    """Load CSV and apply standard cleaning."""
    df = pd.read_csv(filename)
    df = df.dropna()
    df = df[df['value'] > 0]
    return df

df = load_and_clean_data('data.csv')

Create utils.py:

# utils.py - extracted helper functions
def plot_distribution(data, column, title=None):
    """Plot distribution of a column."""
    plt.figure(figsize=(10, 6))
    plt.hist(data[column], bins=50)
    plt.title(title or f'Distribution of {column}')
    plt.show()

def calculate_metrics(y_true, y_pred):
    """Calculate common ML metrics."""
    return {
        'accuracy': accuracy_score(y_true, y_pred),
        'precision': precision_score(y_true, y_pred),
        'recall': recall_score(y_true, y_pred),
        'f1': f1_score(y_true, y_pred)
    }

5. Generate requirements.txt

Extract imports:

import re

imports = set()
for cell in nb['cells']:
    if cell['cell_type'] == 'code':
        for line in cell['source']:
            if line.startswith('import ') or line.startswith('from '):
                # Extract module name
                match = re.match(r'(?:from|import)\s+(\w+)', line)
                if match:
                    imports.add(match.group(1))

# Map to package names
package_mapping = {
    'sklearn': 'scikit-learn',
    'cv2': 'opencv-python',
    'PIL': 'Pillow'
}

with open('requirements.txt', 'w') as f:
    for imp in sorted(imports):
        pkg = package_mapping.get(imp, imp)
        f.write(f"{pkg}\n")

6. Add Documentation

Add docstrings:

# Add markdown cell before major code sections
"""
## Data Preprocessing

This section handles:
- Missing value imputation
- Feature scaling
- Categorical encoding

Input: Raw DataFrame
Output: Preprocessed DataFrame ready for modeling
"""

Document parameters:

# Parameter documentation cell
"""
### Hyperparameters

- `learning_rate`: 0.001 (tested 0.0001, 0.001, 0.01)
- `batch_size`: 32 (optimal for our dataset size)
- `epochs`: 100 (with early stopping)
- `dropout`: 0.5 (prevents overfitting)
"""

7. Best Practices

Recommended structure:

1. Title and Summary
2. Table of Contents
3. Setup (imports, config)
4. Data Loading
5. EDA (Exploratory Data Analysis)
6. Preprocessing
7. Model Definition
8. Training
9. Evaluation
10. Visualization
11. Conclusions
12. Next Steps

Code style:

  • Use meaningful variable names
  • Add comments for complex operations
  • Keep cells focused (one task per cell)
  • Separate imports from main code
  • Clear outputs before committing

8. Optimization

Memory management:

# Delete large intermediate dataframes
del large_df
import gc
gc.collect()

# Use chunking for large files
for chunk in pd.read_csv('large.csv', chunksize=10000):
    process(chunk)

Reproducibility:

# Set random seeds at the top
import numpy as np
import random
import torch

SEED = 42
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)

9. Convert to Script

Extract to .py file:

# notebook_to_script.py
import nbformat
from nbconvert import PythonExporter

with open('notebook.ipynb') as f:
    nb = nbformat.read(f, as_version=4)

exporter = PythonExporter()
body, _ = exporter.from_notebook_node(nb)

with open('script.py', 'w') as f:
    f.write(body)

10. Automated Tools

nbconvert:

# Convert to HTML
jupyter nbconvert --to html notebook.ipynb

# Convert to Python script
jupyter nbconvert --to python notebook.ipynb

# Execute and save
jupyter nbconvert --to notebook --execute notebook.ipynb

black (code formatter):

pip install black[jupyter]

black notebook.ipynb

nbqa (linting):

pip install nbqa

nbqa flake8 notebook.ipynb
nbqa mypy notebook.ipynb

jupytext (version control):

pip install jupytext

# Convert to .py (for better git diffs)
jupytext --to py notebook.ipynb

# Sync .ipynb and .py
jupytext --set-formats ipynb,py notebook.ipynb

Quick Checklist

  • Remove empty cells
  • Clear outputs
  • Add section headers
  • Add table of contents
  • Extract reusable functions
  • Generate requirements.txt
  • Add documentation
  • Set random seeds
  • Format code
  • Test notebook runs top-to-bottom