| name | financial-time-series |
| description | Use when working with price data, trading signals, or implementing momentum strategies. Covers returns calculation, volatility targeting, momentum factors, MACD indicators, time-series momentum (TSMOM), portfolio construction, futures contracts, and risk-adjusted returns for trend-following strategies. |
Financial Time-Series Processing
Purpose
Comprehensive guide for processing financial time-series data and implementing trend-following strategies, based on the X-Trend model and Deep Momentum Networks framework.
When to Use
Activate this skill when:
- Processing price data or returns
- Calculating momentum factors or MACD indicators
- Implementing volatility targeting
- Building trend-following strategies
- Constructing trading portfolios
- Working with futures contracts
- Calculating risk-adjusted returns (Sharpe ratio)
Core Concepts
1. Returns Calculation
Returns linearly de-trend the price series:
def calculate_returns(prices, lookback=1):
"""
Calculate returns over specified lookback period.
Args:
prices: Array of daily close prices p[t]
lookback: Number of days (t') for return calculation
Returns:
returns: r[t-t', t] = (p[t] - p[t-t']) / p[t-t']
"""
return (prices - prices.shift(lookback)) / prices.shift(lookback)
Key Points:
- Use daily close prices
- Standard lookbacks: 1-day, 21-day (1-month), 63-day (3-month), 126-day (6-month), 252-day (1-year)
- Returns remove price trends for stationarity
2. Volatility Targeting
Normalize positions by ex-ante volatility to ensure equal risk contribution:
def volatility_targeting(position, realized_vol, target_vol=0.15):
"""
Scale position by volatility targeting leverage factor.
Args:
position: Raw trading signal z[t] in [-1, 1]
realized_vol: Ex-ante volatility σ[t] (60-day EWMA)
target_vol: Annual target volatility σ_tgt (typically 15%)
Returns:
scaled_position: Volatility-adjusted position
"""
leverage = target_vol / realized_vol
return position * leverage
Implementation:
- Calculate σ[t] using exponentially weighted moving standard deviation over 60 days
- Typical annual target: σ_tgt = 0.15 (15%)
- Ensures each asset contributes approximately equal risk
3. Momentum Factors
Time-Series Momentum (TSMOM)
Classic momentum signal based on historical returns:
def tsmom_signal(returns_252):
"""
Simple 1-year momentum signal.
Args:
returns_252: 252-day (1-year) returns
Returns:
signal: +1 (long) or -1 (short)
"""
return np.sign(returns_252)
Multi-Scale Momentum
Combine signals at different timescales:
def multi_scale_momentum(prices):
"""
Weighted combination of momentum at multiple timescales.
Timescales:
- 21 days (1-month)
- 63 days (3-month)
- 126 days (6-month)
- 252 days (12-month)
"""
timescales = [21, 63, 126, 252]
weights = [0.25, 0.25, 0.25, 0.25] # Equal weighting
signals = []
for t in timescales:
ret = calculate_returns(prices, lookback=t)
signals.append(np.sign(ret))
return np.average(signals, weights=weights)
MACD (Moving Average Convergence Divergence)
Compare exponentially weighted signals at two timescales:
def macd_factor(prices, short=8, long=24, lookback_std=252):
"""
Calculate MACD momentum indicator.
MACD = (EWMA_short - EWMA_long) / std(prices_60)
Normalized by std of past year returns
Common timescale pairs: (8,24), (16,28), (32,96)
Returns:
macd: Normalized MACD signal
> 0 indicates buy, < 0 indicates sell
Magnitude indicates conviction
"""
ewma_short = prices.ewm(span=short).mean()
ewma_long = prices.ewm(span=long).mean()
price_std = prices.ewm(span=60).std()
m = (ewma_short - ewma_long) / price_std
m_std = m.rolling(lookback_std).std()
return m / m_std
MACD to Position Conversion:
def macd_to_position(macd_signal):
"""Convert MACD signal to position using response function."""
return macd_signal * np.exp(-macd_signal**2 / 4) / 0.89
4. Deep Learning Momentum Factors
Normalized returns at multiple timescales for neural network inputs:
def normalized_returns(prices, volatility, timescales=[1, 21, 63, 126, 252]):
"""
Calculate volatility-normalized returns for deep learning models.
r_hat[t-t', t] = r[t-t', t] / (σ[t] * sqrt(t'))
This normalization ensures returns are comparable across timescales.
"""
factors = []
for t in timescales:
ret = calculate_returns(prices, lookback=t)
r_normalized = ret / (volatility * np.sqrt(t))
factors.append(r_normalized)
return np.column_stack(factors)
Full Feature Vector:
def create_feature_vector(prices):
"""
Create input features x[t] for deep momentum models.
Includes:
- Normalized returns at multiple timescales
- MACD indicators at multiple (S, L) pairs
"""
volatility = prices.pct_change().ewm(span=60).std()
# Normalized returns
norm_returns = normalized_returns(prices, volatility)
# MACD features
macd_features = [
macd_factor(prices, 8, 24),
macd_factor(prices, 16, 28),
macd_factor(prices, 32, 96)
]
return np.concatenate([norm_returns, macd_features])
5. Portfolio Construction
Calculate portfolio returns with volatility targeting and transaction costs:
def portfolio_returns(positions, returns, volatility, target_vol=0.15,
transaction_costs=0.0):
"""
Calculate portfolio returns with volatility targeting.
R_portfolio[t+1] = (1/N) * Σ R[i, t+1]
where for each asset i:
R[i,t+1] = z[i,t] * (σ_tgt/σ[i,t]) * r[i,t+1]
- C[i] * σ_tgt * |z[i,t]/σ[i,t] - z[i,t-1]/σ[i,t-1]|
Args:
positions: z[i,t] for each asset (N × T)
returns: r[i,t+1] for each asset
volatility: σ[i,t] for each asset
target_vol: Annual target volatility σ_tgt
transaction_costs: C[i] per asset
Returns:
portfolio_returns: R_portfolio[t+1]
IMPORTANT: Transaction cost calculation uses position_changes which is
already scaled by (target_vol / volatility), so we DON'T multiply by
target_vol again. The formula is C * |scaled_pos[t] - scaled_pos[t-1]|,
where scaled_pos = z * (σ_tgt/σ). This gives C * σ_tgt * |z/σ - z_prev/σ_prev|
as per the paper's Eq. (2).
"""
N = len(positions)
# Scale by volatility targeting: scaled_pos = z * (σ_tgt/σ)
scaled_positions = positions * (target_vol / volatility)
# Asset returns
asset_returns = scaled_positions * returns
# Transaction costs
# position_changes is already in units of σ_tgt * |z/σ - z_prev/σ_prev|
# So we only multiply by transaction_costs C, NOT by target_vol again
position_changes = np.abs(
scaled_positions - scaled_positions.shift(1)
)
costs = transaction_costs * position_changes
# Net returns per asset
net_returns = asset_returns - costs
# Equal-weighted portfolio
return net_returns.mean(axis=0)
6. Risk-Adjusted Returns
Sharpe Ratio
Primary metric for strategy evaluation:
def sharpe_ratio(returns, periods_per_year=252):
"""
Calculate annualized Sharpe ratio.
Sharpe = sqrt(252) * mean(returns) / std(returns)
Measures returns per unit volatility.
"""
return np.sqrt(periods_per_year) * returns.mean() / returns.std()
Sharpe Loss for Neural Networks
Differentiable loss function for direct Sharpe optimization:
def sharpe_loss(positions, returns, volatility, target_vol=0.15):
"""
Negative Sharpe ratio loss for gradient descent.
L_Sharpe = -sqrt(252) * mean_batch(R[t+1]) / std_batch(R[t+1])
where R[t+1] = (σ_tgt/σ[t]) * r[t+1] * position[t]
This is the loss function used in Deep Momentum Networks.
"""
scaled_returns = (target_vol / volatility) * returns * positions
mean_ret = scaled_returns.mean()
std_ret = scaled_returns.std()
return -np.sqrt(252) * mean_ret / std_ret
7. Futures Contracts Handling
Continuous Futures
def create_continuous_contract(contracts, method='ratio_adjusted'):
"""
Chain futures contracts into continuous series.
Methods:
- 'ratio_adjusted' (backwards): Multiply historical prices by ratio
- 'difference_adjusted': Add price differences
Ratio-adjusted method:
- Preserves percentage returns
- Preferred for momentum strategies
- Used in Pinnacle Data CLC Database
"""
if method == 'ratio_adjusted':
# When rolling from contract C1 to C2:
# Adjustment_ratio = P_C1(roll_date) / P_C2(roll_date)
# Apply ratio to all historical prices before roll_date
pass # Implementation details
return continuous_prices
8. Performance Metrics
def calculate_metrics(returns):
"""
Calculate comprehensive performance metrics.
Returns:
metrics: Dict with Sharpe, returns, volatility, drawdown
"""
cumulative_returns = (1 + returns).cumprod()
running_max = cumulative_returns.expanding().max()
drawdown = (cumulative_returns - running_max) / running_max
return {
'sharpe': sharpe_ratio(returns),
'annual_return': returns.mean() * 252,
'annual_volatility': returns.std() * np.sqrt(252),
'max_drawdown': drawdown.min(),
'cumulative_return': cumulative_returns.iloc[-1] - 1
}
Common Patterns
Pattern 1: Basic TSMOM Strategy
def tsmom_strategy(prices, target_vol=0.15):
"""Implement basic time-series momentum strategy."""
# 1. Calculate 1-year returns
returns_252 = calculate_returns(prices, lookback=252)
# 2. Generate signal
signal = np.sign(returns_252)
# 3. Calculate realized volatility (60-day EWMA)
realized_vol = prices.pct_change().ewm(span=60).std()
# 4. Apply volatility targeting
position = volatility_targeting(signal, realized_vol, target_vol)
# 5. Calculate returns
next_day_returns = prices.pct_change().shift(-1)
strategy_returns = position * next_day_returns * (target_vol / realized_vol)
return strategy_returns
Pattern 2: Multi-Asset Portfolio
def multi_asset_portfolio(asset_prices_dict, target_vol=0.15):
"""
Construct equal-risk portfolio across multiple assets.
Args:
asset_prices_dict: {'ASSET1': prices1, 'ASSET2': prices2, ...}
"""
asset_returns = {}
for asset, prices in asset_prices_dict.items():
# Generate signal for each asset
signal = tsmom_signal(calculate_returns(prices, 252))
volatility = prices.pct_change().ewm(span=60).std()
position = volatility_targeting(signal, volatility, target_vol)
# Calculate asset returns
next_ret = prices.pct_change().shift(-1)
asset_returns[asset] = position * next_ret * (target_vol / volatility)
# Equal-weighted portfolio
portfolio = pd.DataFrame(asset_returns).mean(axis=1)
return portfolio
Best Practices
DO:
✅ Always use volatility targeting for risk normalization ✅ Calculate ex-ante volatility using 60-day EWMA of returns ✅ Use backward ratio-adjusted continuous futures for consistent returns ✅ Test on out-of-sample data with expanding window approach ✅ Monitor drawdowns especially during regime changes ✅ Use multiple timescales to balance trend capture vs. responsiveness
DON'T:
❌ Don't assume Gaussian returns - especially in tails ❌ Don't ignore transaction costs - they compound over time ❌ Don't overfit to training period - financial markets are non-stationary ❌ Don't use look-ahead data - ensure causality in backtests ❌ Don't neglect correlation in tail events across assets
Key Formulas Reference
| Concept | Formula | Notes |
|---|---|---|
| Returns | r[t-t',t] = (p[t] - p[t-t']) / p[t-t'] |
Simple returns over t' days |
| Normalized Returns | r_hat[t-t',t] = r[t-t',t] / (σ[t] * sqrt(t')) |
For neural network inputs |
| Volatility Targeting | leverage = σ_tgt / σ[t] |
Ex-ante vol σ[t] from 60-day EWMA |
| TSMOM Signal | z[t] = sign(r[t-252,t]) |
+1 for uptrend, -1 for downtrend |
| MACD | (EWMA_S - EWMA_L) / std(m[-252:]) |
Compare short/long EWMAs |
| Portfolio Return | R_port = (1/N) * Σ R[i,t+1] |
Equal-weighted across N assets |
| Sharpe Ratio | sqrt(252) * mean(R) / std(R) |
Annualized risk-adjusted returns |
Related Concepts
- Regime Change: Sudden market condition shifts (e.g., COVID-19)
- Momentum Crashes: Rapid reversals causing losses
- Factor Crowding: Too many strategies trading same signals
- Mean Reversion: Price tendency to return to long-term mean
- Commodity Trading Advisors (CTAs): Funds using trend-following
References
- Time Series Momentum (Moskowitz, Ooi, Pedersen 2012)
- Deep Momentum Networks (Lim, Zohren, Roberts 2019)
- X-Trend: Few-Shot Learning Patterns (Wood, Kessler, Roberts, Zohren 2024)
Last Updated: Based on X-Trend paper (March 2024) Skill Type: Domain Knowledge Line Count: ~490 (under 500-line rule ✅)