| name | pydanticai-docs |
| description | Use this skill for requests related to Pydantic AI framework - building agents, tools, dependencies, structured outputs, and model integrations. |
Pydantic AI Documentation Skill
Overview
This skill provides guidance for using Pydantic AI - a Python agent framework for building production-grade Generative AI applications. Pydantic AI emphasizes type safety, dependency injection, and structured outputs.
Key Concepts
Agents
Agents are the primary interface for interacting with LLMs. They contain:
- Instructions: System prompts for the LLM
- Tools: Functions the LLM can call
- Output Type: Structured datatype the LLM must return
- Dependencies: Data/services injected into tools and prompts
Models
Supported models include:
- OpenAI:
openai:gpt-4o,openai:gpt-5 - Anthropic:
anthropic:claude-sonnet-4-5 - Google:
google:gemini-2.0-flash - Groq, Azure, Together AI, DeepSeek, Grok, and more
Tools
Two types of tools:
@agent.tool: ReceivesRunContextwith dependencies@agent.tool_plain: Plain function without context
Toolsets
Collections of tools that can be registered with agents:
FunctionToolset: Group multiple toolsMCPServerTool: Model Context Protocol servers- Third-party toolsets (ACI.dev, etc.)
Instructions
1. Fetch Full Documentation
For comprehensive information, fetch the complete Pydantic AI documentation: https://ai.pydantic.dev/llms-full.txt
This contains complete documentation including agents, tools, dependencies, models, and API reference.
2. Quick Reference
Basic Agent Creation
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
result = agent.run_sync('What is the capital of France?')
print(result.output)
Agent with Tools
from pydantic_ai import Agent, RunContext
agent = Agent('openai:gpt-4o', deps_type=str)
@agent.tool
def get_user_name(ctx: RunContext[str]) -> str:
"""Get the current user's name."""
return ctx.deps
result = agent.run_sync('What is my name?', deps='Alice')
Structured Output
from pydantic import BaseModel
from pydantic_ai import Agent
class CityInfo(BaseModel):
name: str
country: str
population: int
agent = Agent('openai:gpt-4o', output_type=CityInfo)
result = agent.run_sync('Tell me about Paris')
print(result.output) # CityInfo(name='Paris', country='France', population=...)
Dependencies
from dataclasses import dataclass
from pydantic_ai import Agent, RunContext
@dataclass
class MyDeps:
api_key: str
user_id: int
agent = Agent('openai:gpt-4o', deps_type=MyDeps)
@agent.tool
async def fetch_data(ctx: RunContext[MyDeps]) -> str:
# Access dependencies via ctx.deps
return f"User {ctx.deps.user_id}"
Using Toolsets
from pydantic_ai import Agent
from pydantic_ai.toolsets import FunctionToolset
toolset = FunctionToolset()
@toolset.tool
def search(query: str) -> str:
"""Search for information."""
return f"Results for: {query}"
agent = Agent('openai:gpt-4o', toolsets=[toolset])
Async Execution
import asyncio
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
async def main():
result = await agent.run('Hello!')
print(result.output)
asyncio.run(main())
Streaming
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
async with agent.run_stream('Tell me a story') as response:
async for text in response.stream():
print(text, end='', flush=True)
3. Common Patterns
Dynamic Instructions
@agent.instructions
async def add_context(ctx: RunContext[MyDeps]) -> str:
return f"Current user ID: {ctx.deps.user_id}"
System Prompts
@agent.system_prompt
def add_system_info() -> str:
return "You are a helpful assistant."
Tool with Retries
@agent.tool(retries=3)
def unreliable_api(query: str) -> str:
"""Call an unreliable API."""
...
Testing with Override
from pydantic_ai.models.test import TestModel
with agent.override(model=TestModel()):
result = agent.run_sync('Test prompt')
4. Installation
# Full installation
pip install pydantic-ai
# Slim installation (specific model)
pip install "pydantic-ai-slim[openai]"
5. Best Practices
- Type Safety: Always define
deps_typeandoutput_typefor better IDE support - Dependency Injection: Use deps for database connections, API clients, etc.
- Structured Outputs: Use Pydantic models for validated, typed responses
- Error Handling: Use
retriesparameter for unreliable tools - Testing: Use
TestModeloroverride()for unit tests