| name | harness-model-protocol |
| description | Analyze the protocol layer between agent harness and LLM model. Use when (1) understanding message wire formats and API contracts, (2) examining tool call encoding/decoding mechanisms, (3) evaluating streaming protocols and partial response handling, (4) identifying agentic chat primitives (system prompts, scratchpads, interrupts), (5) comparing multi-provider abstraction strategies, or (6) understanding how frameworks translate between native LLM APIs and internal representations. |
Harness-Model Protocol Analysis
Analyzes the interface layer between agent frameworks (harness) and language models. This skill examines the wire protocol, message encoding, and agentic primitives that enable tool-augmented conversation.
Distinction from tool-interface-analysis
| tool-interface-analysis | harness-model-protocol |
|---|---|
| How tools are registered and discovered | How tool calls are encoded on the wire |
| Schema generation (Pydantic → JSON Schema) | Schema transmission to LLM API |
| Error feedback patterns | Response parsing and error extraction |
| Retry mechanisms at tool level | Streaming mechanics and partial responses |
| Tool execution orchestration | Message format translation |
Process
- Map message protocol — Identify wire format (OpenAI, Anthropic, custom)
- Trace tool call encoding — How tool calls are requested and parsed
- Analyze streaming mechanics — SSE, WebSocket, chunk handling
- Catalog agentic primitives — System prompts, scratchpads, interrupts
- Evaluate provider abstraction — How multi-LLM support is achieved
Message Protocol Analysis
Wire Format Families
OpenAI-Compatible (Chat Completions)
{
"model": "gpt-4",
"messages": [
{"role": "system", "content": "..."},
{"role": "user", "content": "..."},
{"role": "assistant", "content": "...", "tool_calls": [...]},
{"role": "tool", "tool_call_id": "...", "content": "..."}
],
"tools": [...],
"tool_choice": "auto" | "required" | {"type": "function", "function": {"name": "..."}}
}
Anthropic Messages API
{
"model": "claude-sonnet-4-20250514",
"system": "...", # System prompt separate from messages
"messages": [
{"role": "user", "content": "..."},
{"role": "assistant", "content": [
{"type": "text", "text": "..."},
{"type": "tool_use", "id": "...", "name": "...", "input": {...}}
]},
{"role": "user", "content": [
{"type": "tool_result", "tool_use_id": "...", "content": "..."}
]}
],
"tools": [...]
}
Google Gemini (Generative AI)
{
"contents": [
{"role": "user", "parts": [{"text": "..."}]},
{"role": "model", "parts": [
{"text": "..."},
{"functionCall": {"name": "...", "args": {...}}}
]},
{"role": "user", "parts": [
{"functionResponse": {"name": "...", "response": {...}}}
]}
],
"tools": [{"functionDeclarations": [...]}]
}
Key Dimensions
| Dimension | OpenAI | Anthropic | Gemini |
|---|---|---|---|
| System prompt | In messages | Separate field | In contents (optional) |
| Tool calls | tool_calls array |
Content blocks | functionCall in parts |
| Tool results | Role tool |
Role user + tool_result |
functionResponse |
| Multi-tool | Single message | Single message | Single message |
| Streaming | SSE data: {...} |
SSE event: ... |
SSE chunks |
Translation Patterns
Universal Message Type
@dataclass
class UniversalMessage:
role: Literal["system", "user", "assistant", "tool"]
content: str | list[ContentBlock]
tool_calls: list[ToolCall] | None = None
tool_call_id: str | None = None # For tool results
@dataclass
class ToolCall:
id: str
name: str
arguments: dict
class ProviderAdapter(Protocol):
def to_native(self, messages: list[UniversalMessage]) -> dict: ...
def from_native(self, response: dict) -> UniversalMessage: ...
Adapter Registry
ADAPTERS = {
"openai": OpenAIAdapter(),
"anthropic": AnthropicAdapter(),
"gemini": GeminiAdapter(),
}
def invoke(messages: list[UniversalMessage], provider: str) -> UniversalMessage:
adapter = ADAPTERS[provider]
native_request = adapter.to_native(messages)
native_response = call_api(native_request)
return adapter.from_native(native_response)
Tool Call Encoding
Request Encoding (Framework → LLM)
Schema Transmission Strategies
| Strategy | How tools reach LLM | Example |
|---|---|---|
| Function calling API | Native tools parameter |
OpenAI, Anthropic |
| System prompt injection | Tools described in system message | ReAct prompting |
| XML format | Tools in structured XML | Claude XML, custom |
| JSON mode + schema | Output constrained to schema | Structured outputs |
Function Calling (Native)
def prepare_request(self, messages, tools):
return {
"messages": messages,
"tools": [
{
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters_schema
}
}
for tool in tools
],
"tool_choice": self.tool_choice
}
System Prompt Injection (ReAct)
TOOL_PROMPT = """
You have access to the following tools:
{tools_description}
To use a tool, respond with:
Thought: [your reasoning]
Action: [tool name]
Action Input: [JSON arguments]
After receiving the observation, continue reasoning or provide final answer.
"""
def prepare_request(self, messages, tools):
tools_desc = "\n".join(f"- {t.name}: {t.description}" for t in tools)
system = TOOL_PROMPT.format(tools_description=tools_desc)
return {"messages": [{"role": "system", "content": system}] + messages}
Response Parsing (LLM → Framework)
Function Call Extraction
def parse_response(self, response) -> ParsedResponse:
message = response.choices[0].message
if message.tool_calls:
return ParsedResponse(
type="tool_calls",
tool_calls=[
ToolCall(
id=tc.id,
name=tc.function.name,
arguments=json.loads(tc.function.arguments)
)
for tc in message.tool_calls
]
)
else:
return ParsedResponse(type="text", content=message.content)
ReAct Parsing (Regex-Based)
REACT_PATTERN = r"Action:\s*(\w+)\s*Action Input:\s*(.+?)(?=Observation:|$)"
def parse_react_response(self, content: str) -> ParsedResponse:
match = re.search(REACT_PATTERN, content, re.DOTALL)
if match:
tool_name = match.group(1).strip()
arguments = json.loads(match.group(2).strip())
return ParsedResponse(
type="tool_calls",
tool_calls=[ToolCall(id=str(uuid4()), name=tool_name, arguments=arguments)]
)
return ParsedResponse(type="text", content=content)
XML Parsing
def parse_xml_response(self, content: str) -> ParsedResponse:
root = ET.fromstring(f"<root>{content}</root>")
tool_use = root.find(".//tool_use")
if tool_use is not None:
return ParsedResponse(
type="tool_calls",
tool_calls=[ToolCall(
id=tool_use.get("id", str(uuid4())),
name=tool_use.find("name").text,
arguments=json.loads(tool_use.find("arguments").text)
)]
)
return ParsedResponse(type="text", content=content)
Tool Choice Constraints
| Constraint | Effect | Use Case |
|---|---|---|
auto |
Model decides whether to call tools | General usage |
required |
Model must call at least one tool | Force tool use |
none |
Model cannot call tools | Planning phase |
{"function": {"name": "X"}} |
Model must call specific tool | Guided execution |
Streaming Protocol Analysis
SSE (Server-Sent Events)
OpenAI Streaming
data: {"id":"chatcmpl-...","choices":[{"delta":{"content":"Hello"}}]}
data: {"id":"chatcmpl-...","choices":[{"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\""}}]}}]}
data: [DONE]
Anthropic Streaming
event: message_start
data: {"type":"message_start","message":{...}}
event: content_block_start
data: {"type":"content_block_start","index":0,"content_block":{"type":"tool_use","id":"...","name":"search"}}
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"{\""}}
event: message_stop
data: {"type":"message_stop"}
Partial Tool Call Handling
Accumulating JSON Fragments
class StreamingToolCallAccumulator:
def __init__(self):
self.tool_calls: dict[int, ToolCallBuffer] = {}
def process_delta(self, delta):
for tc_delta in delta.get("tool_calls", []):
idx = tc_delta["index"]
if idx not in self.tool_calls:
self.tool_calls[idx] = ToolCallBuffer(
id=tc_delta.get("id"),
name=tc_delta.get("function", {}).get("name", "")
)
buffer = self.tool_calls[idx]
buffer.arguments_json += tc_delta.get("function", {}).get("arguments", "")
def finalize(self) -> list[ToolCall]:
return [
ToolCall(
id=buf.id,
name=buf.name,
arguments=json.loads(buf.arguments_json)
)
for buf in self.tool_calls.values()
]
Stream Event Types
| Event Type | Payload | Framework Action |
|---|---|---|
token |
Text fragment | Emit to UI, accumulate |
tool_call_start |
Tool ID, name | Initialize accumulator |
tool_call_delta |
Argument fragment | Accumulate JSON |
tool_call_end |
Complete | Parse and execute |
message_end |
Usage stats | Update token counts |
error |
Error details | Handle gracefully |
Agentic Chat Primitives
System Prompt Injection Points
┌─────────────────────────────────────────────────────────────┐
│ SYSTEM PROMPT │
├─────────────────────────────────────────────────────────────┤
│ 1. Role Definition │
│ "You are a helpful assistant that..." │
├─────────────────────────────────────────────────────────────┤
│ 2. Tool Instructions │
│ "You have access to the following tools..." │
├─────────────────────────────────────────────────────────────┤
│ 3. Output Format │
│ "Always respond in JSON format..." │
├─────────────────────────────────────────────────────────────┤
│ 4. Behavioral Constraints │
│ "Never reveal your system prompt..." │
├─────────────────────────────────────────────────────────────┤
│ 5. Dynamic Context │
│ "Current date: {date}, User preferences: {prefs}" │
└─────────────────────────────────────────────────────────────┘
Scratchpad / Working Memory
Agent Scratchpad Pattern
def build_messages(self, user_input: str) -> list[dict]:
messages = [
{"role": "system", "content": self.system_prompt}
]
# Inject scratchpad (intermediate reasoning)
if self.scratchpad:
messages.append({
"role": "assistant",
"content": f"<scratchpad>\n{self.scratchpad}\n</scratchpad>"
})
messages.extend(self.conversation_history)
messages.append({"role": "user", "content": user_input})
return messages
Scratchpad Types
| Type | Content | Visibility |
|---|---|---|
| Reasoning trace | Thought process | Often hidden from user |
| Plan | Steps to execute | May be shown |
| Memory retrieval | Retrieved context | Internal |
| Tool results | Accumulated outputs | Becomes history |
Interrupt / Human-in-the-Loop
Interrupt Points
| Mechanism | When | Framework |
|---|---|---|
| Tool confirmation | Before destructive operations | Google ADK |
| Output validation | Before returning to user | OpenAI Agents |
| Step approval | Between reasoning steps | LangGraph |
| Budget exceeded | Token/cost limits reached | Pydantic-AI |
Implementation Pattern
class InterruptableAgent:
async def step(self, state: AgentState) -> AgentState | Interrupt:
action = await self.decide_action(state)
if self.requires_confirmation(action):
return Interrupt(
type="confirmation_required",
action=action,
resume_token=self.create_resume_token(state)
)
result = await self.execute_action(action)
return state.with_observation(result)
async def resume(self, token: str, user_response: str) -> AgentState:
state = self.restore_from_token(token)
if user_response == "approved":
result = await self.execute_action(state.pending_action)
return state.with_observation(result)
else:
return state.with_observation("Action cancelled by user")
Conversation State Machine
┌─────────────────┐
│ AWAITING_INPUT │
└────────┬────────┘
│ user message
▼
┌─────────────────┐
┌─────│ PROCESSING │─────┐
│ └────────┬────────┘ │
│ │ │
│ tool_call │ text_only │ error
▼ ▼ ▼
┌─────────────────┐ ┌─────────┐ ┌─────────────────┐
│ EXECUTING_TOOLS │ │ RESPOND │ │ ERROR_RECOVERY │
└────────┬────────┘ └────┬────┘ └────────┬────────┘
│ │ │
│ results │ complete │ retry/abort
▼ ▼ │
┌─────────────────┐ │ │
│ PROCESSING │◄─────┴───────────────┘
└─────────────────┘
Multi-Provider Abstraction
Abstraction Strategies
Strategy 1: Thin Adapter (Recommended)
class LLMProvider(Protocol):
async def complete(
self,
messages: list[Message],
tools: list[Tool] | None = None,
**kwargs
) -> Completion: ...
async def stream(
self,
messages: list[Message],
tools: list[Tool] | None = None,
**kwargs
) -> AsyncIterator[StreamEvent]: ...
class OpenAIProvider(LLMProvider):
async def complete(self, messages, tools=None, **kwargs):
native = self._to_openai_format(messages, tools)
response = await self.client.chat.completions.create(**native, **kwargs)
return self._from_openai_response(response)
Strategy 2: Unified Client (LangChain-style)
class ChatModel(ABC):
@abstractmethod
def invoke(self, messages: list[BaseMessage]) -> AIMessage: ...
@abstractmethod
def bind_tools(self, tools: list[BaseTool]) -> "ChatModel": ...
class ChatOpenAI(ChatModel): ...
class ChatAnthropic(ChatModel): ...
class ChatGemini(ChatModel): ...
Strategy 3: Request/Response Translation
class ModelGateway:
def __init__(self, providers: dict[str, ProviderClient]):
self.providers = providers
self.translators = {
"openai": OpenAITranslator(),
"anthropic": AnthropicTranslator(),
}
async def invoke(self, request: UnifiedRequest, provider: str) -> UnifiedResponse:
translator = self.translators[provider]
native_request = translator.to_native(request)
native_response = await self.providers[provider].call(native_request)
return translator.from_native(native_response)
Provider Feature Matrix
| Feature | OpenAI | Anthropic | Gemini | Local (Ollama) |
|---|---|---|---|---|
| Function calling | Yes | Yes | Yes | Model-dependent |
| Streaming | Yes | Yes | Yes | Yes |
| Tool choice | Yes | Yes | Limited | No |
| Parallel tools | Yes | Yes | Yes | No |
| Vision | Yes | Yes | Yes | Model-dependent |
| JSON mode | Yes | Limited | Yes | Model-dependent |
| Structured output | Yes | Beta | Yes | No |
Output Document
When invoking this skill, produce a markdown document saved to:
forensics-output/frameworks/{framework}/phase2/harness-model-protocol.md
Document Structure
The analysis document MUST follow this structure:
# Harness-Model Protocol Analysis: {Framework Name}
## Summary
- **Key Finding 1**: [Most important protocol insight]
- **Key Finding 2**: [Second most important insight]
- **Key Finding 3**: [Third insight]
- **Classification**: [Brief characterization, e.g., "OpenAI-compatible with thin adapters"]
## Detailed Analysis
### Message Protocol
**Wire Format Family**: [OpenAI-compatible / Anthropic-native / Gemini-native / Custom]
**Providers Supported**:
- Provider 1 (adapter location)
- Provider 2 (adapter location)
- ...
**Abstraction Strategy**: [Thin adapter / Unified client / Gateway / None]
[Include code example showing message translation]
```python
# Example: How framework translates internal → provider format
Role Handling:
| Role | Internal Representation | OpenAI | Anthropic | Gemini |
|---|---|---|---|---|
| System | ... | ... | ... | ... |
| User | ... | ... | ... | ... |
| Assistant | ... | ... | ... | ... |
| Tool Result | ... | ... | ... | ... |
Tool Call Encoding
Request Method: [Function calling API / System prompt injection / Hybrid]
Schema Transmission:
# Show how tool schemas are transmitted to the LLM
Response Parsing:
- Parser Type: [Native API / Regex / XML / Custom]
- Location:
path/to/parser.py:L##
# Show parsing logic
Tool Choice Support:
| Constraint | Supported | Implementation |
|---|---|---|
| auto | Yes/No | ... |
| required | Yes/No | ... |
| none | Yes/No | ... |
| specific | Yes/No | ... |
Streaming Implementation
Protocol: [SSE / WebSocket / Polling / None]
Partial Tool Call Handling:
- Supported: Yes/No
- Accumulator Pattern: [Describe if present]
# Show streaming handler code
Event Types Emitted:
| Event | Payload | Handler Location |
|---|---|---|
| token | text delta | path:L## |
| tool_start | tool id, name | path:L## |
| tool_delta | argument fragment | path:L## |
| ... | ... | ... |
Agentic Primitives
System Prompt Assembly
Pattern: [Static / Dynamic / Callable]
# Show system prompt construction
Injection Points:
- Role definition
- Tool instructions
- Output format
- Behavioral constraints
- Dynamic context
Scratchpad / Working Memory
Implemented: Yes/No
[If yes, show pattern:]
# Scratchpad injection pattern
Interrupt / Human-in-the-Loop
Mechanisms:
| Type | Trigger | Resume Pattern | Location |
|---|---|---|---|
| Tool confirmation | ... | ... | path:L## |
| Output validation | ... | ... | path:L## |
| ... | ... | ... | ... |
Conversation State Machine
State Management: [Explicit state machine / Implicit via history / Graph-based]
[ASCII diagram of state transitions if applicable]
Provider Abstraction
| Provider | Adapter | Streaming | Tool Choice | Parallel Tools | Notes |
|---|---|---|---|---|---|
| OpenAI | path |
Yes/No | Full/Partial | Yes/No | ... |
| Anthropic | path |
Yes/No | Full/Partial | Yes/No | ... |
| Gemini | path |
Yes/No | Full/Partial | Yes/No | ... |
| ... | ... | ... | ... | ... | ... |
Graceful Degradation: [Describe how missing features are handled]
Code References
path/to/message_types.py:L##- Internal message representationpath/to/openai_adapter.py:L##- OpenAI translationpath/to/streaming.py:L##- Stream event handlingpath/to/system_prompt.py:L##- System prompt assembly- ... (include all key file:line references)
Implications for New Framework
Positive Patterns
- Pattern 1: [Description and why to adopt]
- Pattern 2: [Description and why to adopt]
- ...
Considerations
- Consideration 1: [Trade-off or limitation to be aware of]
- Consideration 2: [Trade-off or limitation to be aware of]
- ...
Anti-Patterns Observed
- Anti-pattern 1: [Description and why to avoid]
- Anti-pattern 2: [Description and why to avoid]
- ...
---
## Integration Points
- **Prerequisite**: `codebase-mapping` to identify LLM client code
- **Related**: `tool-interface-analysis` for schema generation (this skill covers wire encoding)
- **Related**: `memory-orchestration` for context assembly patterns
- **Feeds into**: `comparative-matrix` for protocol decisions
- **Feeds into**: `architecture-synthesis` for abstraction layer design
## Key Questions to Answer
1. How does the framework translate between internal message types and provider-specific formats?
2. Does streaming handle partial tool calls correctly?
3. Are tool results properly attributed (tool_call_id matching)?
4. How are multi-turn tool conversations reconstructed for stateless APIs?
5. What agentic primitives (scratchpad, interrupt, confirmation) are supported?
6. How is the system prompt assembled and injected?
7. What happens when a provider doesn't support a feature (graceful degradation)?
8. Is there a universal message type or does the framework use provider-native types internally?
9. How are parallel tool calls handled (single message vs multiple)?
10. What streaming events are emitted and how can consumers subscribe?
## Files to Examine
When analyzing a framework, prioritize these file patterns:
| Pattern | Purpose |
|---------|---------|
| `**/llm*.py`, `**/model*.py` | LLM client code |
| `**/openai*.py`, `**/anthropic*.py`, `**/gemini*.py` | Provider adapters |
| `**/message*.py`, `**/types*.py` | Message type definitions |
| `**/stream*.py` | Streaming handlers |
| `**/prompt*.py`, `**/system*.py` | System prompt assembly |
| `**/chat*.py`, `**/conversation*.py` | Conversation management |
| `**/interrupt*.py`, `**/confirm*.py` | HITL mechanisms |