| name | mongodb |
| description | Guide for implementing MongoDB - a document database platform with CRUD operations, aggregation pipelines, indexing, replication, sharding, search capabilities, and comprehensive security. Use when working with MongoDB databases, designing schemas, writing queries, optimizing performance, configuring deployments (Atlas/self-managed/Kubernetes), implementing security, or integrating with applications through 15+ official drivers. (project) |
MongoDB Agent Skill
A comprehensive guide for working with MongoDB - a document-oriented database platform that provides powerful querying, horizontal scaling, high availability, and enterprise-grade security.
When to Use This Skill
Use this skill when you need to:
- Design MongoDB schemas and data models
- Write CRUD operations and complex queries
- Build aggregation pipelines for data transformation
- Optimize query performance with indexes
- Configure replication for high availability
- Set up sharding for horizontal scaling
- Implement security (authentication, authorization, encryption)
- Deploy MongoDB (Atlas, self-managed, Kubernetes)
- Integrate MongoDB with applications (15+ official drivers)
- Troubleshoot performance issues or errors
- Implement Atlas Search or Vector Search
- Work with time series data or change streams
Documentation Coverage
This skill synthesizes 24,618 documentation links across 172 major MongoDB sections, covering:
- MongoDB versions 5.0 through 8.1 (upcoming)
- 15+ official driver languages
- 50+ integration tools (Kafka, Spark, BI Connector, Kubernetes Operator)
- Complete deployment spectrum (Atlas cloud, self-managed, Kubernetes)
I. CORE DATABASE OPERATIONS
A. CRUD Operations
Read Operations
// Find documents
db.collection.find({ status: "active" })
db.collection.findOne({ _id: ObjectId("...") })
// Query operators
db.users.find({ age: { $gte: 18, $lt: 65 } })
db.posts.find({ tags: { $in: ["mongodb", "database"] } })
db.products.find({ price: { $exists: true } })
// Projection (select specific fields)
db.users.find({ status: "active" }, { name: 1, email: 1 })
// Cursor operations
db.collection.find().sort({ createdAt: -1 }).limit(10).skip(20)
Write Operations
// Insert
db.collection.insertOne({ name: "Alice", age: 30 })
db.collection.insertMany([{ name: "Bob" }, { name: "Charlie" }])
// Update
db.users.updateOne(
{ _id: userId },
{ $set: { status: "verified" } }
)
db.users.updateMany(
{ lastLogin: { $lt: cutoffDate } },
{ $set: { status: "inactive" } }
)
// Replace entire document
db.users.replaceOne({ _id: userId }, newUserDoc)
// Delete
db.users.deleteOne({ _id: userId })
db.users.deleteMany({ status: "deleted" })
// Upsert (update or insert if not exists)
db.users.updateOne(
{ email: "user@example.com" },
{ $set: { name: "User", lastSeen: new Date() } },
{ upsert: true }
)
Atomic Operations
// Increment counter
db.posts.updateOne(
{ _id: postId },
{ $inc: { views: 1 } }
)
// Add to array (if not exists)
db.users.updateOne(
{ _id: userId },
{ $addToSet: { interests: "mongodb" } }
)
// Push to array
db.posts.updateOne(
{ _id: postId },
{ $push: { comments: { author: "Alice", text: "Great!" } } }
)
// Find and modify atomically
db.counters.findAndModify({
query: { _id: "sequence" },
update: { $inc: { value: 1 } },
new: true,
upsert: true
})
B. Query Operators (100+)
Comparison Operators
$eq, $ne, $gt, $gte, $lt, $lte
$in, $nin
Logical Operators
$and, $or, $not, $nor
// Example
db.products.find({
$and: [
{ price: { $gte: 100 } },
{ stock: { $gt: 0 } }
]
})
Array Operators
$all, $elemMatch, $size
$firstN, $lastN, $maxN, $minN
// Example: Find docs with all tags
db.posts.find({ tags: { $all: ["mongodb", "database"] } })
// Match array element with multiple conditions
db.products.find({
reviews: {
$elemMatch: { rating: { $gte: 4 }, verified: true }
}
})
Existence & Type
$exists, $type
// Find documents with optional field
db.users.find({ phoneNumber: { $exists: true } })
// Type checking
db.data.find({ value: { $type: "string" } })
C. Aggregation Pipeline
MongoDB's most powerful feature for data transformation and analysis.
Core Pipeline Stages (40+)
db.orders.aggregate([
// Stage 1: Filter documents
{ $match: { status: "completed", total: { $gte: 100 } } },
// Stage 2: Join with customers
{ $lookup: {
from: "customers",
localField: "customerId",
foreignField: "_id",
as: "customer"
}},
// Stage 3: Unwind array
{ $unwind: "$items" },
// Stage 4: Group and aggregate
{ $group: {
_id: "$items.category",
totalRevenue: { $sum: "$items.total" },
orderCount: { $sum: 1 },
avgOrderValue: { $avg: "$total" }
}},
// Stage 5: Sort results
{ $sort: { totalRevenue: -1 } },
// Stage 6: Limit results
{ $limit: 10 },
// Stage 7: Reshape output
{ $project: {
category: "$_id",
revenue: "$totalRevenue",
orders: "$orderCount",
avgValue: { $round: ["$avgOrderValue", 2] },
_id: 0
}}
])
Common Pipeline Patterns
Time-Based Aggregation:
db.events.aggregate([
{ $match: { timestamp: { $gte: startDate, $lt: endDate } } },
{ $group: {
_id: {
year: { $year: "$timestamp" },
month: { $month: "$timestamp" },
day: { $dayOfMonth: "$timestamp" }
},
count: { $sum: 1 }
}}
])
Faceted Search (Multiple Aggregations):
db.products.aggregate([
{ $match: { category: "electronics" } },
{ $facet: {
priceRanges: [
{ $bucket: {
groupBy: "$price",
boundaries: [0, 100, 500, 1000, 5000],
default: "5000+",
output: { count: { $sum: 1 } }
}}
],
topBrands: [
{ $group: { _id: "$brand", count: { $sum: 1 } } },
{ $sort: { count: -1 } },
{ $limit: 5 }
],
avgPrice: [
{ $group: { _id: null, avg: { $avg: "$price" } } }
]
}}
])
Window Functions:
db.sales.aggregate([
{ $setWindowFields: {
partitionBy: "$region",
sortBy: { date: 1 },
output: {
runningTotal: { $sum: "$amount", window: { documents: ["unbounded", "current"] } },
movingAvg: { $avg: "$amount", window: { documents: [-7, 0] } }
}
}}
])
Aggregation Operators (150+)
Math Operators:
$add, $subtract, $multiply, $divide, $mod
$abs, $ceil, $floor, $round, $sqrt, $pow
$log, $log10, $ln, $exp
String Operators:
$concat, $substr, $toLower, $toUpper
$trim, $ltrim, $rtrim, $split
$regexMatch, $regexFind, $regexFindAll
Array Operators:
$arrayElemAt, $slice, $first, $last, $reverse
$sortArray, $filter, $map, $reduce
$zip, $concatArrays
Date/Time Operators:
$dateAdd, $dateDiff, $dateFromString, $dateToString
$dayOfMonth, $month, $year, $dayOfWeek
$week, $hour, $minute, $second
Type Conversion:
$toInt, $toString, $toDate, $toDouble
$toDecimal, $toObjectId, $toBool
II. INDEXING & PERFORMANCE
A. Index Types
Single Field Index
db.users.createIndex({ email: 1 }) // ascending
db.posts.createIndex({ createdAt: -1 }) // descending
Compound Index
// Order matters! Index on { status: 1, createdAt: -1 }
db.orders.createIndex({ status: 1, createdAt: -1 })
// Supports queries on:
// - { status: "..." }
// - { status: "...", createdAt: ... }
// Does NOT efficiently support: { createdAt: ... } alone
Text Index (Full-Text Search)
db.articles.createIndex({ title: "text", body: "text" })
// Search
db.articles.find({ $text: { $search: "mongodb database" } })
// With relevance score
db.articles.find(
{ $text: { $search: "mongodb" } },
{ score: { $meta: "textScore" } }
).sort({ score: { $meta: "textScore" } })
Geospatial Indexes
// 2dsphere for earth-like geometry
db.places.createIndex({ location: "2dsphere" })
// Find nearby
db.places.find({
location: {
$near: {
$geometry: { type: "Point", coordinates: [lon, lat] },
$maxDistance: 5000 // meters
}
}
})
Wildcard Index
// Index all fields in subdocuments
db.products.createIndex({ "attributes.$**": 1 })
// Supports queries on any field under attributes
db.products.find({ "attributes.color": "red" })
Partial Index
// Index only documents matching filter
db.orders.createIndex(
{ customerId: 1 },
{ partialFilterExpression: { status: "active" } }
)
TTL Index (Auto-delete)
// Delete documents 24 hours after createdAt
db.sessions.createIndex(
{ createdAt: 1 },
{ expireAfterSeconds: 86400 }
)
Hashed Index (for sharding)
db.users.createIndex({ userId: "hashed" })
B. Query Optimization
Explain Query Plans
// Basic explain
db.users.find({ email: "user@example.com" }).explain()
// Execution stats (shows actual performance)
db.users.find({ age: { $gte: 18 } }).explain("executionStats")
// Key metrics to check:
// - executionTimeMillis
// - totalDocsExamined vs. nReturned (should be close)
// - stage: "IXSCAN" (using index) vs. "COLLSCAN" (full scan - BAD)
Covered Queries
// Create index
db.users.createIndex({ email: 1, name: 1 })
// Query covered by index (no document fetch needed)
db.users.find(
{ email: "user@example.com" },
{ email: 1, name: 1, _id: 0 } // project only indexed fields
)
Index Hints
// Force specific index
db.users.find({ status: "active", city: "NYC" })
.hint({ status: 1, createdAt: -1 })
Index Management
// List all indexes
db.collection.getIndexes()
// Drop index
db.collection.dropIndex("indexName")
// Hide index (test before dropping)
db.collection.hideIndex("indexName")
db.collection.unhideIndex("indexName")
// Index stats
db.collection.aggregate([{ $indexStats: {} }])
III. DATA MODELING PATTERNS
A. Relationship Patterns
One-to-One (Embedded)
// User with single address
{
_id: ObjectId("..."),
name: "Alice",
email: "alice@example.com",
address: {
street: "123 Main St",
city: "NYC",
zipcode: "10001"
}
}
One-to-Few (Embedded Array)
// Blog post with comments (< 100 comments)
{
_id: ObjectId("..."),
title: "MongoDB Guide",
comments: [
{ author: "Bob", text: "Great post!", date: ISODate("...") },
{ author: "Charlie", text: "Thanks!", date: ISODate("...") }
]
}
One-to-Many (Referenced)
// Author collection
{ _id: ObjectId("author1"), name: "Alice" }
// Books collection (many books per author)
{ _id: ObjectId("book1"), title: "Book 1", authorId: ObjectId("author1") }
{ _id: ObjectId("book2"), title: "Book 2", authorId: ObjectId("author1") }
Many-to-Many (Array of References)
// Users collection
{
_id: ObjectId("user1"),
name: "Alice",
groupIds: [ObjectId("group1"), ObjectId("group2")]
}
// Groups collection
{
_id: ObjectId("group1"),
name: "MongoDB Users",
memberIds: [ObjectId("user1"), ObjectId("user2")]
}
B. Advanced Patterns
Time Series Pattern
// High-frequency sensor data
{
_id: ObjectId("..."),
sensorId: "sensor-123",
timestamp: ISODate("2025-01-01T00:00:00Z"),
readings: [
{ time: 0, temp: 23.5, humidity: 45 },
{ time: 60, temp: 23.6, humidity: 46 },
{ time: 120, temp: 23.4, humidity: 45 }
]
}
// Create time series collection
db.createCollection("sensor_data", {
timeseries: {
timeField: "timestamp",
metaField: "sensorId",
granularity: "minutes"
}
})
Computed Pattern (Cache Results)
// User document with pre-computed stats
{
_id: ObjectId("..."),
username: "alice",
stats: {
postCount: 150,
followerCount: 2500,
lastUpdated: ISODate("...")
}
}
// Update stats periodically or with triggers
Schema Versioning
// Support schema evolution
{
_id: ObjectId("..."),
schemaVersion: 2,
// v2 fields
name: { first: "Alice", last: "Smith" },
// Migration code handles v1 format
}
C. Schema Validation
db.createCollection("users", {
validator: {
$jsonSchema: {
bsonType: "object",
required: ["email", "name"],
properties: {
email: {
bsonType: "string",
pattern: "^.+@.+$",
description: "must be a valid email"
},
age: {
bsonType: "int",
minimum: 0,
maximum: 120
},
status: {
enum: ["active", "inactive", "pending"]
}
}
}
},
validationLevel: "strict", // or "moderate"
validationAction: "error" // or "warn"
})
IV. REPLICATION & HIGH AVAILABILITY
A. Replica Sets
Architecture:
- Primary: Accepts writes, replicates to secondaries
- Secondaries: Replicate primary's oplog, can serve reads
- Arbiter: Votes in elections, holds no data
Configuration:
rs.initiate({
_id: "myReplicaSet",
members: [
{ _id: 0, host: "mongo1:27017" },
{ _id: 1, host: "mongo2:27017" },
{ _id: 2, host: "mongo3:27017" }
]
})
// Check status
rs.status()
// Add member
rs.add("mongo4:27017")
// Remove member
rs.remove("mongo4:27017")
B. Write Concern
Controls acknowledgment of write operations:
// Wait for majority acknowledgment (durable)
db.users.insertOne(
{ name: "Alice" },
{ writeConcern: { w: "majority", wtimeout: 5000 } }
)
// Common levels:
// w: 1 - primary acknowledges (default)
// w: "majority" - majority of nodes acknowledge (recommended for production)
// w: <number> - specific number of nodes
// w: 0 - no acknowledgment (fire and forget)
C. Read Preference
Controls where reads are served from:
// Options:
// - primary (default): read from primary only
// - primaryPreferred: primary if available, else secondary
// - secondary: read from secondary only
// - secondaryPreferred: secondary if available, else primary
// - nearest: lowest network latency
db.collection.find().readPref("secondaryPreferred")
D. Transactions
Multi-document ACID transactions:
const session = client.startSession();
session.startTransaction();
try {
await accounts.updateOne(
{ _id: fromAccount },
{ $inc: { balance: -amount } },
{ session }
);
await accounts.updateOne(
{ _id: toAccount },
{ $inc: { balance: amount } },
{ session }
);
await session.commitTransaction();
} catch (error) {
await session.abortTransaction();
throw error;
} finally {
session.endSession();
}
V. SHARDING & HORIZONTAL SCALING
A. Sharded Cluster Architecture
Components:
- Shards: Replica sets holding data subsets
- Config Servers: Store cluster metadata
- Mongos: Query routers directing operations to shards
B. Shard Key Selection
CRITICAL: Shard key determines data distribution and query performance.
Good Shard Keys:
- High cardinality (many unique values)
- Even distribution (no hotspots)
- Query-aligned (queries include shard key)
// Enable sharding on database
sh.enableSharding("myDatabase")
// Shard collection with hashed key
sh.shardCollection(
"myDatabase.users",
{ userId: "hashed" }
)
// Shard with compound key
sh.shardCollection(
"myDatabase.orders",
{ customerId: 1, orderDate: 1 }
)
C. Zone Sharding
Assign data ranges to specific shards:
// Add shard tags
sh.addShardTag("shard0", "US-EAST")
sh.addShardTag("shard1", "US-WEST")
// Assign ranges to zones
sh.addTagRange(
"myDatabase.users",
{ zipcode: "00000" },
{ zipcode: "50000" },
"US-EAST"
)
D. Query Routing
// Targeted query (includes shard key) - fast
db.users.find({ userId: "12345" })
// Scatter-gather (no shard key) - slow
db.users.find({ email: "user@example.com" })
VI. SECURITY
A. Authentication
Methods:
- SCRAM (Username/Password) - Default
- X.509 Certificates - Mutual TLS
- LDAP (Enterprise)
- Kerberos (Enterprise)
- AWS IAM
- OIDC (OpenID Connect)
// Create admin user
use admin
db.createUser({
user: "admin",
pwd: "strongPassword",
roles: ["root"]
})
// Create database user
use myDatabase
db.createUser({
user: "appUser",
pwd: "password",
roles: [
{ role: "readWrite", db: "myDatabase" }
]
})
B. Role-Based Access Control (RBAC)
Built-in Roles:
read,readWrite: Collection-leveldbAdmin,dbOwner: Database administrationuserAdmin: User managementclusterAdmin: Cluster managementroot: Superuser
Custom Roles:
db.createRole({
role: "customRole",
privileges: [
{
resource: { db: "myDatabase", collection: "users" },
actions: ["find", "update"]
}
],
roles: []
})
C. Encryption
Encryption at Rest
// Configure in mongod.conf
security:
enableEncryption: true
encryptionKeyFile: /path/to/keyfile
Encryption in Transit (TLS/SSL)
// mongod.conf
net:
tls:
mode: requireTLS
certificateKeyFile: /path/to/cert.pem
CAFile: /path/to/ca.pem
Client-Side Field Level Encryption (CSFLE)
// Automatic encryption of sensitive fields
const clientEncryption = new ClientEncryption(client, {
keyVaultNamespace: "encryption.__keyVault",
kmsProviders: {
aws: {
accessKeyId: "...",
secretAccessKey: "..."
}
}
})
// Create data key
const dataKeyId = await clientEncryption.createDataKey("aws", {
masterKey: { region: "us-east-1", key: "..." }
})
// Configure auto-encryption
const encryptedClient = new MongoClient(uri, {
autoEncryption: {
keyVaultNamespace: "encryption.__keyVault",
kmsProviders: { aws: {...} },
schemaMap: {
"myDatabase.users": {
bsonType: "object",
properties: {
ssn: {
encrypt: {
keyId: [dataKeyId],
algorithm: "AEAD_AES_256_CBC_HMAC_SHA_512-Deterministic"
}
}
}
}
}
}
})
VII. DEPLOYMENT OPTIONS
A. MongoDB Atlas (Cloud)
Recommended for most use cases.
Quick Start:
- Create free M0 cluster at mongodb.com/atlas
- Whitelist IP address
- Create database user
- Get connection string
Features:
- Auto-scaling
- Automated backups
- Multi-cloud (AWS, Azure, GCP)
- Multi-region deployments
- Atlas Search & Vector Search
- Charts (embedded analytics)
- Data Federation
- Serverless instances
Connection:
const uri = "mongodb+srv://user:pass@cluster.mongodb.net/database?retryWrites=true&w=majority";
const client = new MongoClient(uri);
B. Self-Managed
Installation:
# Ubuntu/Debian
wget -qO - https://www.mongodb.org/static/pgp/server-8.0.asc | sudo apt-key add -
echo "deb [ arch=amd64,arm64 ] https://repo.mongodb.org/apt/ubuntu jammy/mongodb-org/8.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-8.0.list
sudo apt-get update
sudo apt-get install -y mongodb-org
# Start
sudo systemctl start mongod
sudo systemctl enable mongod
Configuration (mongod.conf):
storage:
dbPath: /var/lib/mongodb
journal:
enabled: true
systemLog:
destination: file
path: /var/log/mongodb/mongod.log
logAppend: true
net:
port: 27017
bindIp: 127.0.0.1
security:
authorization: enabled
replication:
replSetName: "myReplicaSet"
C. Kubernetes Deployment
MongoDB Kubernetes Operator:
apiVersion: mongodbcommunity.mongodb.com/v1
kind: MongoDBCommunity
metadata:
name: mongodb-replica-set
spec:
members: 3
type: ReplicaSet
version: "8.0"
security:
authentication:
modes: ["SCRAM"]
users:
- name: admin
db: admin
passwordSecretRef:
name: mongodb-admin-password
roles:
- name: root
db: admin
statefulSet:
spec:
volumeClaimTemplates:
- metadata:
name: data-volume
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 10Gi
VIII. INTEGRATION & DRIVERS
A. Official Drivers (15+ Languages)
Node.js
const { MongoClient } = require("mongodb");
const client = new MongoClient(uri);
await client.connect();
const db = client.db("myDatabase");
const collection = db.collection("users");
// CRUD
await collection.insertOne({ name: "Alice" });
const user = await collection.findOne({ name: "Alice" });
await collection.updateOne({ name: "Alice" }, { $set: { age: 30 } });
await collection.deleteOne({ name: "Alice" });
Python (PyMongo)
from pymongo import MongoClient
client = MongoClient(uri)
db = client.myDatabase
collection = db.users
# CRUD
collection.insert_one({"name": "Alice"})
user = collection.find_one({"name": "Alice"})
collection.update_one({"name": "Alice"}, {"$set": {"age": 30}})
collection.delete_one({"name": "Alice"})
Java
MongoClient mongoClient = MongoClients.create(uri);
MongoDatabase database = mongoClient.getDatabase("myDatabase");
MongoCollection<Document> collection = database.getCollection("users");
// Insert
collection.insertOne(new Document("name", "Alice"));
// Find
Document user = collection.find(eq("name", "Alice")).first();
// Update
collection.updateOne(eq("name", "Alice"), set("age", 30));
Go
client, _ := mongo.Connect(context.TODO(), options.Client().ApplyURI(uri))
collection := client.Database("myDatabase").Collection("users")
// Insert
collection.InsertOne(context.TODO(), bson.M{"name": "Alice"})
// Find
var user bson.M
collection.FindOne(context.TODO(), bson.M{"name": "Alice"}).Decode(&user)
B. Integration Tools
Kafka Connector
{
"connector.class": "com.mongodb.kafka.connect.MongoSinkConnector",
"connection.uri": "mongodb://localhost:27017",
"database": "myDatabase",
"collection": "events",
"topics": "my-topic"
}
Spark Connector
val df = spark.read
.format("mongodb")
.option("uri", "mongodb://localhost:27017/myDatabase.myCollection")
.load()
df.filter($"age" > 18).show()
BI Connector (SQL Interface)
-- Query MongoDB using SQL
SELECT name, AVG(age) as avg_age
FROM users
WHERE status = 'active'
GROUP BY name;
IX. ADVANCED FEATURES
A. Atlas Search (Full-Text)
Create Search Index:
{
"mappings": {
"dynamic": false,
"fields": {
"title": {
"type": "string",
"analyzer": "lucene.standard"
},
"description": {
"type": "string",
"analyzer": "lucene.english"
}
}
}
}
Query:
db.articles.aggregate([
{
$search: {
text: {
query: "mongodb database",
path: ["title", "description"],
fuzzy: { maxEdits: 1 }
}
}
},
{ $limit: 10 },
{ $project: { title: 1, description: 1, score: { $meta: "searchScore" } } }
])
B. Atlas Vector Search
For AI/ML similarity search:
db.products.aggregate([
{
$vectorSearch: {
index: "vector_index",
path: "embedding",
queryVector: [0.123, 0.456, ...], // 1536 dimensions for OpenAI
numCandidates: 100,
limit: 10
}
},
{
$project: {
name: 1,
description: 1,
score: { $meta: "vectorSearchScore" }
}
}
])
C. Change Streams (Real-Time)
const changeStream = collection.watch([
{ $match: { "fullDocument.status": "active" } }
]);
changeStream.on("change", (change) => {
console.log("Change detected:", change);
// change.operationType: "insert", "update", "delete", "replace"
// change.fullDocument: entire document (if configured)
});
// Resume from specific point
const resumeToken = changeStream.resumeToken;
const newStream = collection.watch([], { resumeAfter: resumeToken });
D. Bulk Operations
const bulkOps = [
{ insertOne: { document: { name: "Alice", age: 30 } } },
{ updateOne: {
filter: { name: "Bob" },
update: { $set: { age: 25 } },
upsert: true
}},
{ deleteOne: { filter: { name: "Charlie" } } }
];
const result = await collection.bulkWrite(bulkOps, { ordered: false });
console.log(`Inserted: ${result.insertedCount}, Updated: ${result.modifiedCount}`);
X. PERFORMANCE OPTIMIZATION
Best Practices
Index Critical Fields
- Index fields used in queries, sorts, joins
- Monitor slow queries (>100ms)
- Use compound indexes for multi-field queries
Use Projection
// Good: Only return needed fields db.users.find({ status: "active" }, { name: 1, email: 1 }) // Bad: Return entire document db.users.find({ status: "active" })Limit Result Sets
db.users.find().limit(100)Use Aggregation Pipeline
- Process data server-side instead of client-side
- Use
$matchearly to filter - Use
$projectto reduce document size
Connection Pooling
const client = new MongoClient(uri, { maxPoolSize: 50, minPoolSize: 10 });Batch Writes
// Good: Batch insert await collection.insertMany(documents); // Bad: Individual inserts for (const doc of documents) { await collection.insertOne(doc); }Write Concern Tuning
- Use
w: 1for non-critical writes (faster) - Use
w: "majority"for critical data (safer)
- Use
Read Preference
- Use
secondaryfor read-heavy analytics - Use
primaryfor strong consistency
- Use
Monitoring
// Check slow queries
db.setProfilingLevel(1, { slowms: 100 })
db.system.profile.find().sort({ ts: -1 }).limit(10)
// Current operations
db.currentOp()
// Server status
db.serverStatus()
// Collection stats
db.collection.stats()
XI. TROUBLESHOOTING
Common Errors
| Error | Cause | Solution |
|---|---|---|
MongoNetworkError |
Connection failed | Check network, IP whitelist, credentials |
E11000 duplicate key |
Duplicate unique field | Check unique indexes, handle duplicates |
ValidationError |
Schema validation failed | Check document structure, field types |
OperationTimeout |
Query too slow | Add indexes, optimize query, increase timeout |
AggregationResultTooLarge |
Result > 16MB | Use $limit, $project, or $out |
InvalidSharKey |
Bad shard key | Choose high-cardinality, even-distribution key |
ChunkTooBig |
Jumbo chunk | Use refineShardKey or re-shard |
OplogTailFailed |
Replication lag | Check network, increase oplog size |
Debugging Tools
// Explain query plan
db.collection.find({ field: value }).explain("executionStats")
// Check index usage
db.collection.aggregate([{ $indexStats: {} }])
// Analyze slow queries
db.setProfilingLevel(2) // Profile all queries
db.system.profile.find({ millis: { $gt: 100 } })
// Check replication lag
rs.printReplicationInfo()
rs.printSecondaryReplicationInfo()
XII. QUICK REFERENCE
Top 20 Operations (by Frequency)
find()- Query documentsupdateOne()/updateMany()- Modify documentsinsertOne()/insertMany()- Add documentsdeleteOne()/deleteMany()- Remove documentsaggregate()- Complex queriescreateIndex()- Performance optimizationexplain()- Query analysisfindOne()- Get single documentcountDocuments()- Count matchesreplaceOne()- Replace documentdistinct()- Get unique valuesbulkWrite()- Batch operationsfindAndModify()- Atomic updatewatch()- Monitor changessort()/limit()/skip()- Result manipulation$lookup- Join collections$group- Aggregate data$match- Filter pipeline$project- Shape outputhint()- Force index
Common Patterns
Pagination:
const page = 2;
const pageSize = 20;
db.collection.find()
.skip((page - 1) * pageSize)
.limit(pageSize)
Cursor-based Pagination (Better):
const lastId = ObjectId("...");
db.collection.find({ _id: { $gt: lastId } })
.limit(20)
Atomic Counter:
db.counters.findAndModify({
query: { _id: "sequence" },
update: { $inc: { value: 1 } },
new: true,
upsert: true
})
Soft Delete:
// Mark as deleted
db.users.updateOne({ _id: userId }, { $set: { deleted: true, deletedAt: new Date() } })
// Query active only
db.users.find({ deleted: { $ne: true } })
XIII. RESOURCES
Official Documentation
- Full Docs: https://www.mongodb.com/docs/
- MongoDB Manual: https://www.mongodb.com/docs/manual/
- Drivers: https://www.mongodb.com/docs/drivers/
- Atlas: https://www.mongodb.com/docs/atlas/
Tools
- MongoDB Compass - GUI for MongoDB
- MongoDB Shell (mongosh) - Modern shell
- Atlas CLI - Automate Atlas operations
- Database Tools - mongodump, mongorestore, mongoimport
Best Practices Summary
- Always use indexes for queried fields
- Embedded vs. Referenced: Embed for 1-to-few, reference for 1-to-many
- Shard key: High cardinality + even distribution + query-aligned
- Security: Enable auth, use TLS, encrypt at rest for production
- Replication: Minimum 3 nodes for high availability
- Write concern:
w: "majority"for critical data - Monitor: Track slow queries, replication lag, disk usage
- Test: Use explain() to verify query performance
- Connection pooling: Configure appropriate pool size
- Schema validation: Define schema for data integrity
XIV. VERSION-SPECIFIC FEATURES
MongoDB 8.0 (Current)
- Config shard (combined config + shard role)
- Improved aggregation performance
- Enhanced security features
MongoDB 7.0
- Auto-merging chunks
- Time series improvements
- Queryable encryption GA
MongoDB 6.0
- Resharding support
- Clustered collections
- Time series collections improvements
MongoDB 5.0
- Time series collections
- Live resharding
- Versioned API
Common Use Cases
E-Commerce
- Product catalog (embedded attributes)
- Orders (transactions for consistency)
- User sessions (TTL indexes for cleanup)
- Search (Atlas Search for products)
IoT/Time Series
- Sensor data (time series collections)
- Real-time analytics (change streams)
- Retention policies (TTL indexes)
Social Network
- User profiles (embedded or referenced)
- Posts & comments (embedded for small, referenced for large)
- Real-time feeds (change streams)
- Search (Atlas Search for content)
Analytics
- Event tracking (high write throughput)
- Aggregation pipelines (complex analytics)
- Data federation (query across sources)
When NOT to Use MongoDB
- Strong consistency over availability (use traditional RDBMS)
- Complex multi-table joins (SQL databases excel here)
- Extremely small dataset (<1GB) with simple queries
- ACID transactions across multiple databases (not supported)
This skill provides comprehensive MongoDB knowledge for implementing database solutions, from basic CRUD operations to advanced distributed systems with sharding, replication, and security. Always refer to official documentation for the latest features and version-specific details.