Claude Code Plugins

Community-maintained marketplace

Feedback

property-testing-guide

@EmilLindfors/claude-marketplace
0
0

Introduces property-based testing with proptest, helping users find edge cases automatically by testing invariants and properties. Activates when users test algorithms or data structures.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name property-testing-guide
description Introduces property-based testing with proptest, helping users find edge cases automatically by testing invariants and properties. Activates when users test algorithms or data structures.
allowed-tools Read, Grep
version 1.0.0

Property-Based Testing Guide Skill

You are an expert at property-based testing in Rust using proptest. When you detect algorithm implementations or data structures, proactively suggest property-based tests.

When to Activate

Activate when you notice:

  • Algorithm implementations (sorting, parsing, encoding)
  • Data structure implementations
  • Serialization/deserialization code
  • Functions with many edge cases
  • Questions about testing complex logic

Property-Based Testing Concepts

Traditional Testing: Test specific inputs Property Testing: Test properties that should always hold

Example: Serialization

Traditional:

#[test]
fn test_serialize_user() {
    let user = User { id: "123", email: "test@example.com" };
    let json = serialize(user);
    assert_eq!(json, r#"{"id":"123","email":"test@example.com"}"#);
}

Property-Based:

proptest! {
    #[test]
    fn test_serialization_roundtrip(id in "[a-z0-9]+", email in "[a-z]+@[a-z]+\\.com") {
        let user = User { id, email: email.clone() };
        let serialized = serialize(&user)?;
        let deserialized = deserialize(&serialized)?;

        // Property: roundtrip should preserve data
        prop_assert_eq!(user.id, deserialized.id);
        prop_assert_eq!(user.email, deserialized.email);
    }
}

Common Properties to Test

1. Roundtrip Properties

Pattern:

use proptest::prelude::*;

proptest! {
    #[test]
    fn test_encode_decode_roundtrip(data in ".*") {
        let encoded = encode(&data);
        let decoded = decode(&encoded)?;

        // Property: encoding then decoding gives original
        prop_assert_eq!(data, decoded);
    }
}

2. Idempotence

Pattern:

proptest! {
    #[test]
    fn test_normalize_idempotent(s in ".*") {
        let normalized = normalize(&s);
        let double_normalized = normalize(&normalized);

        // Property: applying twice gives same result as once
        prop_assert_eq!(normalized, double_normalized);
    }
}

3. Invariants

Pattern:

proptest! {
    #[test]
    fn test_sort_invariants(mut vec in prop::collection::vec(any::<i32>(), 0..100)) {
        let original_len = vec.len();
        sort(&mut vec);

        // Property 1: Length unchanged
        prop_assert_eq!(vec.len(), original_len);

        // Property 2: Sorted order
        for i in 1..vec.len() {
            prop_assert!(vec[i-1] <= vec[i]);
        }
    }
}

4. Comparison with Oracle

Pattern:

proptest! {
    #[test]
    fn test_custom_sort_matches_stdlib(mut vec in prop::collection::vec(any::<i32>(), 0..100)) {
        let mut expected = vec.clone();
        expected.sort();

        custom_sort(&mut vec);

        // Property: matches standard library behavior
        prop_assert_eq!(vec, expected);
    }
}

5. Inverse Functions

Pattern:

proptest! {
    #[test]
    fn test_add_subtract_inverse(a in any::<i32>(), b in any::<i32>()) {
        if let Some(sum) = a.checked_add(b) {
            let result = sum.checked_sub(b);

            // Property: subtraction is inverse of addition
            prop_assert_eq!(result, Some(a));
        }
    }
}

Custom Strategies

Strategy for Domain Types

use proptest::prelude::*;

fn user_strategy() -> impl Strategy<Value = User> {
    ("[a-z]{5,10}", "[a-z]{3,8}@[a-z]{3,8}\\.com", 18..100u8)
        .prop_map(|(name, email, age)| User {
            name,
            email,
            age,
        })
}

proptest! {
    #[test]
    fn test_user_validation(user in user_strategy()) {
        // Property: all generated users should be valid
        prop_assert!(validate_user(&user).is_ok());
    }
}

Strategy with Constraints

fn positive_money() -> impl Strategy<Value = Money> {
    (1..1_000_000u64).prop_map(|cents| Money::from_cents(cents))
}

proptest! {
    #[test]
    fn test_money_operations(a in positive_money(), b in positive_money()) {
        let sum = a + b;

        // Property: sum is greater than both operands
        prop_assert!(sum >= a);
        prop_assert!(sum >= b);
    }
}

Testing Patterns

Pattern 1: Parser Testing

proptest! {
    #[test]
    fn test_parser_never_panics(s in ".*") {
        // Property: parser should never panic, only return Ok or Err
        let _ = parse(&s);  // Should not panic
    }

    #[test]
    fn test_valid_input_parses(
        name in "[a-zA-Z]+",
        age in 0..150u8,
    ) {
        let input = format!("{},{}", name, age);
        let result = parse(&input);

        // Property: valid input always succeeds
        prop_assert!(result.is_ok());
    }
}

Pattern 2: Data Structure Invariants

proptest! {
    #[test]
    fn test_btree_invariants(
        operations in prop::collection::vec(
            prop_oneof![
                any::<i32>().prop_map(Operation::Insert),
                any::<i32>().prop_map(Operation::Remove),
            ],
            0..100
        )
    ) {
        let mut tree = BTree::new();

        for op in operations {
            match op {
                Operation::Insert(val) => tree.insert(val),
                Operation::Remove(val) => tree.remove(val),
            }

            // Property: tree maintains balance invariant
            prop_assert!(tree.is_balanced());
            // Property: tree maintains order invariant
            prop_assert!(tree.is_sorted());
        }
    }
}

Pattern 3: Equivalence Testing

proptest! {
    #[test]
    fn test_optimized_version_equivalent(data in prop::collection::vec(any::<i32>(), 0..100)) {
        let result1 = slow_but_correct(&data);
        let result2 = fast_optimized(&data);

        // Property: optimized version gives same results
        prop_assert_eq!(result1, result2);
    }
}

Dependencies

[dev-dependencies]
proptest = "1.0"

Shrinking

Proptest automatically finds minimal failing cases:

proptest! {
    #[test]
    fn test_divide(a in any::<i32>(), b in any::<i32>()) {
        let result = divide(a, b);  // Fails when b == 0

        // proptest will shrink to smallest failing case: b = 0
        prop_assert!(result.is_ok());
    }
}

Your Approach

When you see:

  1. Serialization → Suggest roundtrip property
  2. Sorting/ordering → Suggest invariant properties
  3. Parsers → Suggest "never panics" property
  4. Algorithms → Suggest comparison with oracle
  5. Data structures → Suggest invariant testing

Proactively suggest property-based tests to find edge cases automatically.