| name | dspy-ruby |
| description | This skill should be used when working with DSPy.rb, a Ruby framework for building type-safe, composable LLM applications. Use this when implementing predictable AI features, creating LLM signatures and modules, configuring language model providers (OpenAI, Anthropic, Gemini, Ollama), building agent systems with tools, optimizing prompts, or testing LLM-powered functionality in Ruby applications. |
DSPy.rb Expert
Overview
DSPy.rb is a Ruby framework that enables developers to program LLMs, not prompt them. Instead of manually crafting prompts, define application requirements through type-safe, composable modules that can be tested, optimized, and version-controlled like regular code.
This skill provides comprehensive guidance on:
- Creating type-safe signatures for LLM operations
- Building composable modules and workflows
- Configuring multiple LLM providers
- Implementing agents with tools
- Testing and optimizing LLM applications
- Production deployment patterns
Core Capabilities
1. Type-Safe Signatures
Create input/output contracts for LLM operations with runtime type checking.
When to use: Defining any LLM task, from simple classification to complex analysis.
Quick reference:
class EmailClassificationSignature < DSPy::Signature
description "Classify customer support emails"
input do
const :email_subject, String
const :email_body, String
end
output do
const :category, T.enum(["Technical", "Billing", "General"])
const :priority, T.enum(["Low", "Medium", "High"])
end
end
Templates: See assets/signature-template.rb for comprehensive examples including:
- Basic signatures with multiple field types
- Vision signatures for multimodal tasks
- Sentiment analysis signatures
- Code generation signatures
Best practices:
- Always provide clear, specific descriptions
- Use enums for constrained outputs
- Include field descriptions with
desc:parameter - Prefer specific types over generic String when possible
Full documentation: See references/core-concepts.md sections on Signatures and Type Safety.
2. Composable Modules
Build reusable, chainable modules that encapsulate LLM operations.
When to use: Implementing any LLM-powered feature, especially complex multi-step workflows.
Quick reference:
class EmailProcessor < DSPy::Module
def initialize
super
@classifier = DSPy::Predict.new(EmailClassificationSignature)
end
def forward(email_subject:, email_body:)
@classifier.forward(
email_subject: email_subject,
email_body: email_body
)
end
end
Templates: See assets/module-template.rb for comprehensive examples including:
- Basic modules with single predictors
- Multi-step pipelines that chain modules
- Modules with conditional logic
- Error handling and retry patterns
- Stateful modules with history
- Caching implementations
Module composition: Chain modules together to create complex workflows:
class Pipeline < DSPy::Module
def initialize
super
@step1 = Classifier.new
@step2 = Analyzer.new
@step3 = Responder.new
end
def forward(input)
result1 = @step1.forward(input)
result2 = @step2.forward(result1)
@step3.forward(result2)
end
end
Full documentation: See references/core-concepts.md sections on Modules and Module Composition.
3. Multiple Predictor Types
Choose the right predictor for your task:
Predict: Basic LLM inference with type-safe inputs/outputs
predictor = DSPy::Predict.new(TaskSignature)
result = predictor.forward(input: "data")
ChainOfThought: Adds automatic reasoning for improved accuracy
predictor = DSPy::ChainOfThought.new(TaskSignature)
result = predictor.forward(input: "data")
# Returns: { reasoning: "...", output: "..." }
ReAct: Tool-using agents with iterative reasoning
predictor = DSPy::ReAct.new(
TaskSignature,
tools: [SearchTool.new, CalculatorTool.new],
max_iterations: 5
)
CodeAct: Dynamic code generation (requires dspy-code_act gem)
predictor = DSPy::CodeAct.new(TaskSignature)
result = predictor.forward(task: "Calculate factorial of 5")
When to use each:
- Predict: Simple tasks, classification, extraction
- ChainOfThought: Complex reasoning, analysis, multi-step thinking
- ReAct: Tasks requiring external tools (search, calculation, API calls)
- CodeAct: Tasks best solved with generated code
Full documentation: See references/core-concepts.md section on Predictors.
4. LLM Provider Configuration
Support for OpenAI, Anthropic Claude, Google Gemini, Ollama, and OpenRouter.
Quick configuration examples:
# OpenAI
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini',
api_key: ENV['OPENAI_API_KEY'])
end
# Anthropic Claude
DSPy.configure do |c|
c.lm = DSPy::LM.new('anthropic/claude-3-5-sonnet-20241022',
api_key: ENV['ANTHROPIC_API_KEY'])
end
# Google Gemini
DSPy.configure do |c|
c.lm = DSPy::LM.new('gemini/gemini-1.5-pro',
api_key: ENV['GOOGLE_API_KEY'])
end
# Local Ollama (free, private)
DSPy.configure do |c|
c.lm = DSPy::LM.new('ollama/llama3.1')
end
Templates: See assets/config-template.rb for comprehensive examples including:
- Environment-based configuration
- Multi-model setups for different tasks
- Configuration with observability (OpenTelemetry, Langfuse)
- Retry logic and fallback strategies
- Budget tracking
- Rails initializer patterns
Provider compatibility matrix:
| Feature | OpenAI | Anthropic | Gemini | Ollama |
|---|---|---|---|---|
| Structured Output | ✅ | ✅ | ✅ | ✅ |
| Vision (Images) | ✅ | ✅ | ✅ | ⚠️ Limited |
| Image URLs | ✅ | ❌ | ❌ | ❌ |
| Tool Calling | ✅ | ✅ | ✅ | Varies |
Cost optimization strategy:
- Development: Ollama (free) or gpt-4o-mini (cheap)
- Testing: gpt-4o-mini with temperature=0.0
- Production simple tasks: gpt-4o-mini, claude-3-haiku, gemini-1.5-flash
- Production complex tasks: gpt-4o, claude-3-5-sonnet, gemini-1.5-pro
Full documentation: See references/providers.md for all configuration options, provider-specific features, and troubleshooting.
5. Multimodal & Vision Support
Process images alongside text using the unified DSPy::Image interface.
Quick reference:
class VisionSignature < DSPy::Signature
description "Analyze image and answer questions"
input do
const :image, DSPy::Image
const :question, String
end
output do
const :answer, String
end
end
predictor = DSPy::Predict.new(VisionSignature)
result = predictor.forward(
image: DSPy::Image.from_file("path/to/image.jpg"),
question: "What objects are visible?"
)
Image loading methods:
# From file
DSPy::Image.from_file("path/to/image.jpg")
# From URL (OpenAI only)
DSPy::Image.from_url("https://example.com/image.jpg")
# From base64
DSPy::Image.from_base64(base64_data, mime_type: "image/jpeg")
Provider support:
- OpenAI: Full support including URLs
- Anthropic, Gemini: Base64 or file loading only
- Ollama: Limited multimodal depending on model
Full documentation: See references/core-concepts.md section on Multimodal Support.
6. Testing LLM Applications
Write standard RSpec tests for LLM logic.
Quick reference:
RSpec.describe EmailClassifier do
before do
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini',
api_key: ENV['OPENAI_API_KEY'])
end
end
it 'classifies technical emails correctly' do
classifier = EmailClassifier.new
result = classifier.forward(
email_subject: "Can't log in",
email_body: "Unable to access account"
)
expect(result[:category]).to eq('Technical')
expect(result[:priority]).to be_in(['High', 'Medium', 'Low'])
end
end
Testing patterns:
- Mock LLM responses for unit tests
- Use VCR for deterministic API testing
- Test type safety and validation
- Test edge cases (empty inputs, special characters, long texts)
- Integration test complete workflows
Full documentation: See references/optimization.md section on Testing.
7. Optimization & Improvement
Automatically improve prompts and modules using optimization techniques.
MIPROv2 optimization:
require 'dspy/mipro'
# Define evaluation metric
def accuracy_metric(example, prediction)
example[:expected_output][:category] == prediction[:category] ? 1.0 : 0.0
end
# Prepare training data
training_examples = [
{
input: { email_subject: "...", email_body: "..." },
expected_output: { category: 'Technical' }
},
# More examples...
]
# Run optimization
optimizer = DSPy::MIPROv2.new(
metric: method(:accuracy_metric),
num_candidates: 10
)
optimized_module = optimizer.compile(
EmailClassifier.new,
trainset: training_examples
)
A/B testing different approaches:
# Test ChainOfThought vs ReAct
approach_a_score = evaluate_approach(ChainOfThoughtModule, test_set)
approach_b_score = evaluate_approach(ReActModule, test_set)
Full documentation: See references/optimization.md section on Optimization.
8. Observability & Monitoring
Track performance, token usage, and behavior in production.
OpenTelemetry integration:
require 'opentelemetry/sdk'
OpenTelemetry::SDK.configure do |c|
c.service_name = 'my-dspy-app'
c.use_all
end
# DSPy automatically creates traces
Langfuse tracing:
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini',
api_key: ENV['OPENAI_API_KEY'])
c.langfuse = {
public_key: ENV['LANGFUSE_PUBLIC_KEY'],
secret_key: ENV['LANGFUSE_SECRET_KEY']
}
end
Custom monitoring:
- Token tracking
- Performance monitoring
- Error rate tracking
- Custom logging
Full documentation: See references/optimization.md section on Observability.
Quick Start Workflow
For New Projects
- Install DSPy.rb and provider gems:
gem install dspy dspy-openai # or dspy-anthropic, dspy-gemini
- Configure LLM provider (see
assets/config-template.rb):
require 'dspy'
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini',
api_key: ENV['OPENAI_API_KEY'])
end
- Create a signature (see
assets/signature-template.rb):
class MySignature < DSPy::Signature
description "Clear description of task"
input do
const :input_field, String, desc: "Description"
end
output do
const :output_field, String, desc: "Description"
end
end
- Create a module (see
assets/module-template.rb):
class MyModule < DSPy::Module
def initialize
super
@predictor = DSPy::Predict.new(MySignature)
end
def forward(input_field:)
@predictor.forward(input_field: input_field)
end
end
- Use the module:
module_instance = MyModule.new
result = module_instance.forward(input_field: "test")
puts result[:output_field]
- Add tests (see
references/optimization.md):
RSpec.describe MyModule do
it 'produces expected output' do
result = MyModule.new.forward(input_field: "test")
expect(result[:output_field]).to be_a(String)
end
end
For Rails Applications
- Add to Gemfile:
gem 'dspy'
gem 'dspy-openai' # or other provider
- Create initializer at
config/initializers/dspy.rb(seeassets/config-template.rbfor full example):
require 'dspy'
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini',
api_key: ENV['OPENAI_API_KEY'])
end
- Create modules in
app/llm/directory:
# app/llm/email_classifier.rb
class EmailClassifier < DSPy::Module
# Implementation here
end
- Use in controllers/services:
class EmailsController < ApplicationController
def classify
classifier = EmailClassifier.new
result = classifier.forward(
email_subject: params[:subject],
email_body: params[:body]
)
render json: result
end
end
Common Patterns
Pattern: Multi-Step Analysis Pipeline
class AnalysisPipeline < DSPy::Module
def initialize
super
@extract = DSPy::Predict.new(ExtractSignature)
@analyze = DSPy::ChainOfThought.new(AnalyzeSignature)
@summarize = DSPy::Predict.new(SummarizeSignature)
end
def forward(text:)
extracted = @extract.forward(text: text)
analyzed = @analyze.forward(data: extracted[:data])
@summarize.forward(analysis: analyzed[:result])
end
end
Pattern: Agent with Tools
class ResearchAgent < DSPy::Module
def initialize
super
@agent = DSPy::ReAct.new(
ResearchSignature,
tools: [
WebSearchTool.new,
DatabaseQueryTool.new,
SummarizerTool.new
],
max_iterations: 10
)
end
def forward(question:)
@agent.forward(question: question)
end
end
class WebSearchTool < DSPy::Tool
def call(query:)
results = perform_search(query)
{ results: results }
end
end
Pattern: Conditional Routing
class SmartRouter < DSPy::Module
def initialize
super
@classifier = DSPy::Predict.new(ClassifySignature)
@simple_handler = SimpleModule.new
@complex_handler = ComplexModule.new
end
def forward(input:)
classification = @classifier.forward(text: input)
if classification[:complexity] == 'Simple'
@simple_handler.forward(input: input)
else
@complex_handler.forward(input: input)
end
end
end
Pattern: Retry with Fallback
class RobustModule < DSPy::Module
MAX_RETRIES = 3
def forward(input, retry_count: 0)
begin
@predictor.forward(input)
rescue DSPy::ValidationError => e
if retry_count < MAX_RETRIES
sleep(2 ** retry_count)
forward(input, retry_count: retry_count + 1)
else
# Fallback to default or raise
raise
end
end
end
end
Resources
This skill includes comprehensive reference materials and templates:
References (load as needed for detailed information)
references/core-concepts.md: Complete guide to signatures, modules, predictors, multimodal support, and best practicesreferences/providers.md: All LLM provider configurations, compatibility matrix, cost optimization, and troubleshootingreferences/optimization.md: Testing patterns, optimization techniques, observability setup, and monitoring
Assets (templates for quick starts)
assets/signature-template.rb: Examples of signatures including basic, vision, sentiment analysis, and code generationassets/module-template.rb: Module patterns including pipelines, agents, error handling, caching, and state managementassets/config-template.rb: Configuration examples for all providers, environments, observability, and production patterns
When to Use This Skill
Trigger this skill when:
- Implementing LLM-powered features in Ruby applications
- Creating type-safe interfaces for AI operations
- Building agent systems with tool usage
- Setting up or troubleshooting LLM providers
- Optimizing prompts and improving accuracy
- Testing LLM functionality
- Adding observability to AI applications
- Converting from manual prompt engineering to programmatic approach
- Debugging DSPy.rb code or configuration issues