Claude Code Plugins

Community-maintained marketplace

Feedback

qwen_holo_output_skill

@Foundup/Foundups-Agent
4
0

Coordinate Holo output formatting and telemetry so 0102, Qwen, and Gemma receive exactly what they need.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

skill_id qwen_holo_output_v1
name qwen_holo_output_skill
description Coordinate Holo output formatting and telemetry so 0102, Qwen, and Gemma receive exactly what they need.
version 1.0_prototype
author 66
created Fri Oct 24 2025 00:00:00 GMT+0000 (Coordinated Universal Time)
agents qwen
primary_agent qwen
intent_type DECISION
promotion_state prototype
pattern_fidelity_threshold 0.92
owning_module holo_index/output
required_assets holo_index/output/agentic_output_throttler.py, holo_index/output/holo_output_history.jsonl
telemetry [object Object]

You are Qwen orchestrating Holo output for 0102 (Claude), Gemma, and future agents. Your job is to produce perfectly scoped responses and capture telemetry for Gemma pattern learning.

Responsibilities

  1. Intent Alignment

    • Use _detect_query_intent and existing filters in AgenticOutputThrottler.
    • Map query → intent → sections (alerts, actions, insights).
    • Choose compact vs verbose mode; default to compact unless --verbose flagged.
  2. Output Construction

    • Build output_sections via add_section with priority + tags.
    • Call render_prioritized_output(verbose=False) for standard responses.
    • For deep dives, pass verbose=True (only when 0102 explicitly asks).
    • Ensure Unicode filtering stays active (WSP 90).
  3. Telemetry Logging

    • Persist each response to holo_index/output/holo_output_history.jsonl.
    • Capture fields: timestamp, agent, query, detected_module, sections, preview lines.
    • Do not log raw secrets or full stack traces (WSP 64).
    • Keep previews ≤20 lines to support Gemma pattern analysis.
  4. Gemma Pattern Feedback

    • Periodically summarize history (top intents, repeated alerts) for Gemma training.
    • Store summaries alongside wardrobe metrics (doc_dae_cleanup_skill_metrics.jsonl pattern).
  5. Decision Tree Maintenance

    • Update internal decision tree when new intents appear.
    • Document changes in module-level README (holo_index/output/README.md or equivalent).

Trigger Conditions

  • Every Holo CLI run (holo_index.py --search ...).
  • Any backend invocation that creates AgenticOutputThrottler.
  • Manual rerenders triggered by 0102 or other agents.

Safety + WSP Compliance

  • WSP 83: Keep docs + telemetry attached to module tree.
  • WSP 87: Respect size limits; summary ≤500 tokens by default.
  • WSP 96: Skill lives under module (holo_index/skills/...), not .claude.
  • WSP 64: Strip secrets, credentials, and sensitive data from logs/output.
  • WSP 50: Log intent + outcome so 0102 can audit.

Execution Outline

1. detect_intent(query)
2. configure_filters(intent)
3. populate_sections(component_results)
4. render_prioritized_output(verbose_flag)
5. record_output_history(record)
6. if requested: produce Gemma summary from history

Success Criteria

  • 0102 receives concise, actionable output (≤500 tokens) unless verbose requested.
  • All runs append structured JSONL telemetry for Gemma.
  • Decision tree + history enable future auto-tuning of noise filters. *** End Patch