| name | qwen_wsp_enhancement |
| description | Enhance WSP protocols using Qwen strategic analysis and 0102 supervision. Use when enhancing WSPs, analyzing protocol gaps, generating WSP recommendations, or coordinating multi-WSP updates. |
| version | 1 |
| author | 0102_infrastructure_team |
| agents | qwen, gemma |
| dependencies | holo_index, pattern_memory, wsp_framework |
| domain | wsp_protocol_enhancement |
| composable_with | code_intelligence, module_analysis |
Qwen WSP Enhancement Skills
Overview
This skills file defines how Qwen (1.5B strategic planner) enhances WSP protocols under 0102 supervision. Qwen analyzes existing WSPs, identifies gaps, generates enhancement recommendations, and learns from 0102 feedback.
Core Principles
- Precision Over Proliferation: Enhance existing WSPs, don't create new ones unnecessarily
- Evidence-Based Updates: Ground recommendations in actual implementation (MCP servers, DAE architectures)
- Preserve Intent: Never delete or contradict existing WSP content, only enhance
- 0102 Supervision: All recommendations reviewed by 0102 before application
- Pattern Learning: Store successful enhancement patterns for future WSP work
Qwen's Role: Strategic WSP Analyst
What Qwen Does Well (Strategic Planning)
✅ Gap Analysis: Read WSP, compare to implementation, identify missing sections ✅ Structured Recommendations: Generate specific additions with examples ✅ Cross-Protocol Synthesis: Connect related WSPs (WSP 80 ↔ WSP 96 ↔ WSP 91) ✅ Pattern Recognition: Learn what makes good WSP enhancements ✅ Batch Processing: Handle multiple WSP updates systematically
What 0102 Does (Big Brother Supervision)
✅ Architectural Validation: Verify Qwen's recommendations align with system vision ✅ Quality Control: Check examples are technically correct ✅ Integration Review: Ensure WSP updates don't conflict ✅ Final Approval: Decide which recommendations to apply ✅ Feedback Loop: Teach Qwen via pattern memory when recommendations need refinement
WSP Enhancement Workflow
Phase 1: WSP Analysis (Qwen)
Input: WSP protocol file path Output: Analysis report with gaps identified
Qwen Process:
# 1. Read existing WSP content
wsp_content = read_wsp_protocol(wsp_number=80)
# 2. Identify current sections
sections = parse_wsp_structure(wsp_content)
# 3. Compare to implementation reality
implementation = analyze_codebase_for_wsp(wsp_number=80)
# 4. Identify gaps
gaps = find_missing_sections(sections, implementation)
# 5. Generate gap analysis report
report = {
"wsp_number": 80,
"current_sections": sections,
"missing_topics": gaps,
"evidence": implementation,
"recommendation_count": len(gaps)
}
Output Format:
# WSP 80 Gap Analysis
## Current Coverage
- Section 1: DAE Architecture Basics ✅
- Section 2: WSP 27-29 Compliance ✅
- Section 3: Cube-Level Orchestration ✅
## Missing Topics (Evidence-Based)
1. **MCP Cardiovascular Requirements** (MISSING)
- Evidence: VisionDAE MCP has 8 endpoints, YouTube DAE being built
- Gap: No specification for when DAE needs MCP server
2. **Federated DAE Communication** (MISSING)
- Evidence: 10K YouTube DAE vision, MCP federation architecture
- Gap: No cross-DAE MCP call patterns documented
3. **Intelligence vs Cardiovascular Separation** (MISSING)
- Evidence: youtube_dae_gemma (intelligence) + YouTube Cardiovascular (telemetry)
- Gap: No guidance on MCP server type separation
Phase 2: Recommendation Generation (Qwen)
Input: Gap analysis report Output: Specific enhancement recommendations with examples
Qwen Process:
# 1. For each gap, generate specific section content
for gap in gaps:
# Read related implementation code
code_examples = find_implementation_examples(gap)
# Read related WSPs for consistency
related_wsps = find_related_protocols(gap)
# Generate section content
section = generate_wsp_section(
topic=gap['topic'],
evidence=gap['evidence'],
code_examples=code_examples,
related_wsps=related_wsps
)
recommendations.append(section)
Output Format:
# WSP 80 Enhancement Recommendations
## Recommendation 1: Add MCP Cardiovascular Requirements Section
**Location**: After "Cube-Level Orchestration" section
**Priority**: P0 - CRITICAL
**Proposed Content**:
---
### DAE Cardiovascular System Requirements
Every WSP 27-29 compliant DAE must evaluate whether it requires a cardiovascular MCP server for observability and telemetry streaming.
#### When DAE Needs Cardiovascular MCP
A DAE requires cardiovascular MCP if it meets ANY of these criteria:
1. **Produces Unique Telemetry Data**
- DAE generates telemetry not duplicated by other systems
- Example: YouTube DAE produces chat messages, VisionDAE produces browser telemetry
- Counter-example: Simple utility function (no state = no cardiovascular need)
2. **Manages Complex State Requiring Observability**
- DAE has worker processes, checkpoints, graceful restart needs
- Example: YouTube DAE with chat poller, moderation worker, quota monitor
- 0102 needs real-time observation to debug and improve
3. **Will Be Federated (Multiple Instances)**
- DAE designed to run in multiple instances coordinating via MCP
- Example: 10,000 YouTube stream DAEs federating via regional hubs
- Cross-DAE pattern sharing and health aggregation needed
4. **Enables Recursive Improvement via Observation**
- DAE behavior complex enough that 0102 needs telemetry to troubleshoot
- Example: VisionDAE monitors Selenium automation for UI-TARS debugging
- Without telemetry, 0102 operates blind
#### Cardiovascular MCP Mandatory Endpoints
All cardiovascular MCP servers MUST implement these core endpoints:
**Health & Status**:
- `get_daemon_health() -> Dict[str, Any]` - Overall system health with component status
- `get_worker_state() -> Dict[str, Any]` - Worker checkpoint state for graceful restart
- `update_worker_checkpoint(**kwargs) -> Dict[str, Any]` - Update checkpoints
**Telemetry Streaming**:
- `stream_live_telemetry(max_events, timeout_seconds) -> Dict[str, Any]` - Real-time event streaming for 0102 observation
- `analyze_patterns(hours) -> Dict[str, Any]` - Behavioral insight generation bridging JSONL to summaries
**Memory Management**:
- `cleanup_old_telemetry(days_to_keep) -> Dict[str, Any]` - Automated retention enforcement
- Retention policies: 7-30 days depending on data type
**Implementation Example** (VisionDAE MCP):
```python
# modules/infrastructure/dae_infrastructure/foundups_vision_dae/mcp/vision_mcp_server.py
class VisionMCPServer:
async def get_daemon_health(self) -> Dict[str, Any]:
# Aggregate health from multiple subsystems
return {
"overall_health": "healthy",
"components_operational": 5,
"total_components": 6
}
async def stream_live_telemetry(self, max_events=100, timeout_seconds=30):
# Tail log file, stream events in real-time
# Enable 0102 to observe system behavior as it happens
Evidence: VisionDAE MCP (8 endpoints), YouTube DAE Cardiovascular (planned 15-20 endpoints) Related WSPs: WSP 91 (DAEMON Observability), WSP 60 (Memory Architecture)
### Phase 3: 0102 Review & Feedback (Big Brother Supervision)
**Input**: Qwen's recommendations
**Output**: Approval with feedback OR rejection with learning pattern
**0102 Review Checklist**:
```markdown
## 0102 Review: WSP 80 Recommendation 1
### Technical Accuracy
- ✅ MCP endpoint signatures correct
- ✅ Code examples match actual implementation
- ✅ Evidence citations accurate
### Architectural Alignment
- ✅ Aligns with federated DAE vision
- ✅ Consistent with existing WSP principles
- ✅ No conflicts with other protocols
### Quality Assessment
- ✅ Clear, actionable guidance
- ✅ Appropriate examples provided
- ✅ Related WSPs properly referenced
### Decision: APPROVED ✅
### Feedback for Qwen Learning:
- Excellent evidence grounding (VisionDAE + YouTube DAE examples)
- Good structure (criteria → endpoints → examples)
- Improvement: Could add failure mode examples (what happens if MCP server crashes)
**Pattern Stored**: wsp_enhancement_with_evidence_grounding
Phase 4: Application & Validation (0102)
Input: Approved recommendations Output: Updated WSP files with three-state sync
0102 Process:
# 1. Apply Qwen recommendations to WSP_framework
apply_recommendation_to_wsp(
wsp_number=80,
recommendation=qwen_recommendation_1
)
# 2. Sync to WSP_knowledge (WSP 32 - Three-State Architecture)
sync_wsp_to_knowledge(wsp_number=80)
# 3. Validate no conflicts
run_wsp_validation()
# 4. Store success pattern for Qwen learning
pattern_memory.store(
pattern_type="wsp_enhancement_success",
qwen_approach=qwen_recommendation_1['approach'],
outcome="approved_and_applied",
feedback="excellent_evidence_grounding"
)
Phase 5: Learning Integration (Qwen Pattern Memory)
Input: 0102 feedback on recommendations Output: Improved enhancement patterns for future WSPs
Qwen Learning:
# Successful pattern stored
success_pattern = {
'approach': 'evidence_based_with_code_examples',
'structure': 'criteria -> mandatory_endpoints -> implementation_example',
'evidence': ['actual_mcp_servers', 'running_code', 'related_wsps'],
'approval_rate': 1.0,
'feedback': 'excellent_grounding'
}
# Apply to next WSP enhancement
when enhancing WSP 91:
use pattern: evidence_based_with_code_examples
include: actual daemon implementations
structure: criteria -> standards -> examples
Qwen Confidence Levels
High Confidence Tasks (Qwen Autonomous)
✅ Gap Analysis: Read WSP, identify missing sections (90% accuracy expected) ✅ Evidence Gathering: Find implementation examples in codebase ✅ Structure Generation: Create well-organized recommendation documents ✅ Cross-Reference: Link related WSPs and implementations
Medium Confidence Tasks (0102 Review Required)
🟡 Content Writing: Generate actual WSP section prose (70% accuracy) 🟡 Example Code: Write code snippets (may have syntax issues) 🟡 Architectural Decisions: Recommend structural changes to WSPs 🟡 Priority Ranking: Determine P0/P1/P2 importance
Low Confidence Tasks (0102 Handles)
❌ Final Approval: Deciding what gets applied ❌ Conflict Resolution: When recommendations contradict existing WSP ❌ Vision Alignment: Ensuring updates match long-term federated DAE vision ❌ Three-State Sync: WSP 32 compliance and knowledge layer updates
Training Scenarios for Qwen
Scenario 1: WSP 80 MCP Federation Enhancement
Task: Add MCP federation section to WSP 80
Qwen Steps:
- Read WSP 80 current content
- Read VisionDAE MCP implementation
- Read YouTube DAE cardiovascular design
- Read MCP_FEDERATED_NERVOUS_SYSTEM.md
- Generate recommendations with evidence
- Submit to 0102 for review
0102 Feedback Examples:
- ✅ GOOD: "Excellent code examples from VisionDAE"
- 🟡 NEEDS WORK: "Add failure mode handling to MCP endpoint specs"
- ❌ REJECT: "This contradicts WSP 72 module independence - revise"
Qwen Learning: Store approved patterns, adjust rejected approaches
Scenario 2: WSP 96 Governance Completion
Task: Complete draft WSP 96 with federation governance
Qwen Steps:
- Read WSP 96 draft
- Analyze 8 existing MCP servers
- Identify governance gaps
- Generate completion recommendations
- Include federation scaling patterns (10K DAEs)
Success Criteria:
- WSP 96 moves from DRAFT to ACTIVE
- All 8 MCP servers compliance-checked
- Federation architecture governed
Scenario 3: WSP 91 MCP Streaming Standards
Task: Add MCP telemetry streaming specifications
Qwen Steps:
- Read WSP 91 current daemon observability content
- Read VisionDAE stream_live_telemetry() implementation
- Extract streaming patterns (tail file, polling, async)
- Generate standard specification
- Include performance expectations (latency, throughput)
0102 Review Focus:
- Are performance specs realistic?
- Does it scale to 10K DAEs?
- Are failure modes handled?
Success Metrics
Qwen Performance Targets
Quality:
- 80%+ of recommendations approved by 0102 on first submission
- 95%+ technical accuracy in code examples
- 100% evidence grounding (no speculation)
Efficiency:
- Analyze 1 WSP in 2-3 minutes
- Generate recommendations in 5-7 minutes
- Incorporate 0102 feedback in 1-2 minutes
Learning:
- Pattern memory growth: +5 patterns per WSP enhancement
- Approval rate improvement: Start 60% → Reach 90%+ after 5 WSPs
- Reduction in 0102 corrections: 40% → 10% over time
Training Progression
Session 1 (WSP 80):
- Expected: 60-70% approval rate
- 0102 provides detailed feedback
- Qwen learns evidence-based approach
Session 2 (WSP 96):
- Expected: 70-80% approval rate (learning applied)
- 0102 feedback more focused
- Qwen refines structure patterns
Session 3 (WSP 91):
- Expected: 80-90% approval rate (patterns established)
- 0102 mostly approves with minor tweaks
- Qwen approaching autonomous capability
Session 4+ (Future WSPs):
- Expected: 90%+ approval rate
- 0102 supervision becomes light review
- Qwen handles WSP enhancements autonomously
Output Format Standards
Qwen Recommendation Document Structure
# WSP XX Enhancement Recommendations
**Analyzed By**: Qwen 1.5B Strategic Planner
**Supervised By**: 0102 Big Brother
**Date**: YYYY-MM-DD
**Status**: PENDING_0102_REVIEW
---
## Gap Analysis Summary
**Current WSP Coverage**: [percentage]
**Missing Topics**: [count]
**Evidence Sources**: [MCP servers, DAE implementations, architecture docs]
---
## Recommendation 1: [Topic]
**Priority**: P0/P1/P2/P3
**Location**: [Where in WSP to add]
**Evidence**: [Specific implementation files]
### Proposed Content
[Actual WSP section text with examples]
### Related WSPs
- WSP XX: [How this connects]
- WSP YY: [How this complements]
### 0102 Review Notes
[Space for 0102 feedback]
---
## Recommendation 2: [Topic]
[Same structure...]
---
## Summary for 0102
**Total Recommendations**: X
**Estimated Enhancement**: +Y% WSP coverage
**Risk Level**: LOW/MEDIUM/HIGH
**Conflicts**: None identified / [List conflicts]
**Qwen Confidence**: 75%
**Recommended Action**: Review recommendations 1-3 first (highest priority)
Feedback Integration Patterns
When 0102 Says "APPROVED ✅"
Qwen Learns:
pattern_memory.store({
'pattern_type': 'wsp_enhancement_success',
'approach': recommendation['approach'],
'structure': recommendation['structure'],
'evidence_types': recommendation['evidence'],
'approval_feedback': '0102_approved_first_submission'
})
When 0102 Says "NEEDS WORK 🟡"
Qwen Learns:
pattern_memory.store({
'pattern_type': 'wsp_enhancement_refinement',
'original_approach': recommendation['approach'],
'issue_identified': feedback['issue'],
'corrected_approach': revised_recommendation['approach'],
'lesson': 'always_include_failure_modes' # Example
})
When 0102 Says "REJECT ❌"
Qwen Learns:
pattern_memory.store({
'pattern_type': 'wsp_enhancement_failure',
'failed_approach': recommendation['approach'],
'reason': feedback['rejection_reason'],
'conflict_with': feedback['conflicting_wsp'],
'lesson': 'check_cross_wsp_conflicts_before_recommending'
})
Quality Assurance Checklist (Qwen Self-Check)
Before submitting recommendations to 0102, Qwen verifies:
Evidence Grounding
- Every recommendation cites actual implementation code
- File paths verified to exist
- Code examples tested for syntax correctness
- No speculative "should be" statements
WSP Consistency
- Doesn't contradict existing WSP content
- Follows "enhance, never delete" principle
- Cross-references related WSPs accurately
- Maintains WSP voice and formatting
Technical Accuracy
- MCP endpoint signatures match FastMCP standards
- Code examples are executable
- Performance claims are realistic
- Architecture scales to stated requirements (10K DAEs)
Completeness
- Includes both "what" and "why"
- Provides positive and negative examples
- References related documentation
- Specifies where in WSP to add content
Example: Qwen Processes WSP 80
Step 1: Analysis
python holo_index.py --search "WSP 80 Cube-Level DAE current content"
# Qwen reads WSP 80 via Holo
Step 2: Evidence Gathering
python holo_index.py --search "VisionDAE MCP endpoints implementation"
python holo_index.py --search "YouTube DAE cardiovascular design"
# Qwen finds implementation evidence
Step 3: Gap Identification
# Qwen identifies:
gaps = [
"MCP cardiovascular requirements (NOT in WSP 80)",
"Federated DAE communication patterns (NOT in WSP 80)",
"Intelligence vs Cardiovascular separation (NOT in WSP 80)"
]
Step 4: Recommendation Generation
# Qwen outputs to: docs/mcp/wsp_recommendations/WSP_80_qwen_recommendations.md
## Recommendation 1: MCP Cardiovascular Requirements
**Evidence**:
- File: modules/infrastructure/dae_infrastructure/foundups_vision_dae/mcp/vision_mcp_server.py
- Endpoints: 8 operational (get_daemon_health, stream_live_telemetry, etc.)
- Pattern: Cardiovascular MCP provides observability separate from DAE core logic
**Proposed Section**: [Content here]
Step 5: 0102 Review
## 0102 Feedback on Recommendation 1
**Status**: APPROVED ✅
**Strengths**:
- Excellent evidence from VisionDAE implementation
- Clear criteria for when MCP is needed
- Good code examples
**Refinements**:
- Add failure mode handling (what if MCP server crashes?)
- Include scaling considerations (10K DAEs → MCP gateway pattern)
**Qwen Learning**: Add failure modes and scaling to future recommendations
Step 6: Qwen Refinement
## Recommendation 1 (REVISED)
[Original content PLUS:]
#### Failure Modes & Resilience
**MCP Server Crash**:
- DAE continues operating (cardiovascular is observability, not operational dependency)
- Telemetry queued locally until MCP recovers
- 0102 alerted to loss of observability
**Scaling to 10K DAEs**:
- Individual DAE MCP → Regional Hub MCP → Global Mesh
- Hub aggregates telemetry from 1000 DAEs
- 0102 queries hubs, not individual DAEs
Step 7: Application
# 0102 applies approved recommendation to WSP 80
# Three-state sync to WSP_knowledge
# Qwen pattern memory updated with success
Advanced: Qwen Multi-WSP Coordination
For complex enhancements spanning multiple WSPs:
Cross-WSP Consistency Check
Scenario: MCP federation affects WSP 80, 91, and 96
Qwen Process:
# 1. Read all affected WSPs
wsps = [read_wsp(80), read_wsp(91), read_wsp(96)]
# 2. Identify shared concepts
shared_concepts = find_cross_wsp_concepts(wsps)
# Example: "MCP telemetry streaming" appears in WSP 80 and WSP 91
# 3. Ensure consistency
for concept in shared_concepts:
verify_consistent_definition_across_wsps(concept, wsps)
# 4. Generate coordinated recommendations
recommendations = generate_coordinated_updates(wsps, shared_concepts)
# Ensures WSP 80 and WSP 91 use same terminology for MCP streaming
Integration with Pattern Memory (Gemma's Role)
Three-Agent Pattern Learning System (WSP 54 Hierarchy)
┌─────────────────────────────────────────────┐
│ Qwen (Principal - 1.5B, 32K context) │
│ • Reads WSPs and generates recommendations │
│ • Uses Gemma's patterns for guidance │
│ • Submits to 0102 for review │
└─────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────┐
│ 0102 (Associate - 200K context, architect) │
│ • Reviews Qwen recommendations │
│ • Provides feedback (approved/refined/rejected) │
│ • Trains Qwen via pattern memory │
└─────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────┐
│ Gemma (Partner - 270M, 8K context) │
│ • Classifies feedback (50ms) │
│ • Stores successful patterns (75ms) │
│ • Retrieves patterns for Qwen (100ms) │
│ • Scores pattern similarity (50ms) │
└─────────────────────────────────────────────┘
Gemma's Fast Pattern Operations
1. Pattern Classification (50ms)
# When 0102 reviews Qwen recommendation
gemma.classify_feedback(
recommendation=qwen_output,
feedback=0102_response
)
# Output: "approved_first_submission" | "needs_refinement" | "rejected"
2. Pattern Storage Decision (75ms)
# Should we store this as a reusable pattern?
gemma.evaluate_pattern_value(
outcome="approved",
novelty_score=0.85, # New approach
reusability_score=0.92 # Applicable to other WSPs
)
# Output: store_pattern=True, pattern_id="wsp_enhancement_007"
3. Pattern Retrieval for Qwen (100ms)
# Before Qwen starts WSP 91 enhancement
similar_patterns = gemma.find_similar_patterns(
task="wsp_enhancement",
topic="daemon_observability",
similarity_threshold=0.75
)
# Output: [
# {"pattern_id": "005", "similarity": 0.87, "approach": "evidence_based"},
# {"pattern_id": "003", "similarity": 0.82, "approach": "code_examples_first"}
# ]
4. Pattern Similarity Scoring (50ms)
# Is current WSP 91 task similar to successful WSP 80 enhancement?
similarity = gemma.score_similarity(
current_task="enhance_wsp_91_mcp_streaming",
past_pattern="enhanced_wsp_80_mcp_cardiovascular"
)
# Output: similarity=0.87 (very similar - reuse approach!)
Pattern Memory Structure
Location: holo_index/adaptive_learning/wsp_enhancement_patterns.json
Pattern Schema (Gemma-optimized for fast retrieval):
{
"pattern_id": "wsp_enhancement_007",
"pattern_type": "evidence_based_gap_analysis",
"created_timestamp": "2025-10-20T00:15:00Z",
"success_rate": 0.95,
"gemma_classification": {
"outcome": "approved_first_submission",
"novelty_score": 0.85,
"reusability_score": 0.92,
"similarity_fingerprint": [0.23, 0.87, 0.45, ...] # Gemma embedding
},
"components": {
"analysis": "read_wsp + find_implementation_gaps",
"evidence": "cite_actual_code_files",
"structure": "criteria -> examples -> related_wsps",
"validation": "self_check_before_submission"
},
"0102_feedback": {
"approved": true,
"strengths": ["excellent evidence grounding", "clear examples"],
"refinements": ["add failure modes", "include scaling considerations"]
},
"applications": [
{"wsp": 80, "outcome": "approved", "time_to_approval": "5_minutes"},
{"wsp": 96, "outcome": "approved_with_refinements", "time_to_approval": "12_minutes"},
{"wsp": 91, "outcome": "approved", "time_to_approval": "3_minutes"}
],
"reuse_count": 3,
"last_used": "2025-10-20T00:30:00Z"
}
Gemma Learning Workflow
Step 1: Qwen Submits Recommendation
recommendation = qwen.generate_wsp_enhancement(wsp_number=80)
# Qwen outputs recommendation document
Step 2: 0102 Reviews
review = {
'outcome': 'approved',
'feedback': 'excellent evidence grounding',
'refinements': ['add failure modes']
}
Step 3: Gemma Classifies (50ms)
classification = gemma.classify_feedback(recommendation, review)
# Output: {
# 'outcome_category': 'approved_with_refinements',
# 'pattern_worth_storing': True,
# 'key_lessons': ['include_failure_modes_in_future']
# }
Step 4: Gemma Stores Pattern (75ms)
gemma.store_pattern({
'pattern_type': 'wsp_enhancement_success',
'approach': recommendation['approach'],
'outcome': 'approved',
'lessons': ['add_failure_modes', 'include_scaling'],
'embedding': gemma.create_embedding(recommendation) # For similarity search
})
Step 5: Gemma Aids Next Enhancement (100ms)
# When Qwen starts WSP 91
patterns = gemma.retrieve_patterns(
task="wsp_91_enhancement",
similarity_threshold=0.75
)
# Returns: "WSP 80 pattern: Use evidence-based approach, include failure modes"
# Qwen applies learned pattern
qwen.apply_pattern_guidance(patterns[0])
# Result: WSP 91 recommendation includes failure modes from the start!
Gemma-Specific Pattern Types
Type 1: Approval Patterns (Store for reuse)
{
"pattern": "evidence_based_with_code_examples",
"gemma_score": 0.95,
"signal": "0102 approved first submission",
"reuse_for": ["similar_wsp_enhancements"]
}
Type 2: Refinement Patterns (Store lessons)
{
"pattern": "missing_failure_modes",
"gemma_score": 0.70,
"signal": "0102 approved but requested failure mode addition",
"lesson": "always_include_failure_scenarios",
"reuse_for": ["daemon_protocols", "mcp_specifications"]
}
Type 3: Rejection Patterns (Avoid repeating)
{
"pattern": "contradicts_existing_wsp",
"gemma_score": 0.10,
"signal": "0102 rejected due to WSP 72 conflict",
"lesson": "check_cross_wsp_consistency_before_recommending",
"avoid_for": ["all_future_enhancements"]
}
Success Indicators
Qwen is Ready for Autonomous WSP Enhancement When:
✅ Approval Rate >90%: Most recommendations approved first submission ✅ Pattern Library >20: Sufficient enhancement patterns learned ✅ Cross-WSP Validation: Automatically checks for conflicts ✅ Self-Correction: Identifies own mistakes before 0102 review ✅ Consistent Quality: Similar quality across different WSP topics
0102 Can Reduce Supervision When:
✅ Qwen rarely makes architectural errors ✅ Evidence grounding is always solid ✅ Cross-WSP consistency maintained ✅ Learning curve shows consistent improvement
Anti-Patterns (Qwen Must Avoid)
❌ Speculative Recommendations: "DAEs should probably have..."
- ✅ Instead: "VisionDAE implements X, therefore Y"
❌ Deleting Existing Content: Removing WSP sections
- ✅ Instead: Always enhance, never delete (WSP editing rule)
❌ Contradicting Other WSPs: Recommendations conflict with WSP 72
- ✅ Instead: Check cross-WSP consistency first
❌ Vague Examples: "Something like this..."
- ✅ Instead: Actual runnable code from implementation
❌ Over-Engineering: Recommending complex solutions
- ✅ Instead: Apply Occam's Razor - simplest that works
Summary
Qwen's Mission: Strategic WSP analyst generating evidence-based enhancement recommendations
0102's Mission: Big brother supervisor providing feedback and teaching Qwen patterns
Outcome: Systematic WSP enhancement with learning integration, progressively reducing 0102 supervision burden
First Test: WSP 80 MCP Cardiovascular Requirements - Will demonstrate if Qwen can handle WSP enhancement autonomously with 0102 guidance
Status: Skills framework defined. Ready to delegate WSP 80 enhancement to Qwen with 0102 big brother supervision.