| name | data-export-formats |
| description | Use when exporting data for ad platforms (Google Ads, Meta) or working with project datasets. Documents exact CSV formats for Enhanced Conversions, Customer Match, and project data schemas. |
Data Export Formats
Use this skill when creating CSV exports for ad platforms or when you need to understand the project's data schemas.
Google Ads Export Formats
Enhanced Conversions CSV
For uploading offline conversion data to improve Smart Bidding.
Required columns:
Email,Phone,Conversion Name,Conversion Time,Conversion Value,Conversion Currency
Format requirements:
- Email: SHA256 hash (32 hex chars, lowercase)
- Phone: SHA256 hash (32 hex chars, lowercase)
- Conversion Name: String matching your Google Ads conversion action
- Conversion Time: ISO 8601 UTC format (
2024-11-15T14:32:00Z) - Conversion Value: Numeric, no currency symbol
- Conversion Currency: 3-letter code (
USD,EUR, etc.)
Example:
Email,Phone,Conversion Name,Conversion Time,Conversion Value,Conversion Currency
ed8e83c2f4cb7b9f43cdc75c148b0b09,628923b3c489bda7dd9ebba89cb5b46c,paid_subscription,2025-11-03T00:00:00Z,2388.0,USD
1bffb899c9248b28e37cda02dbd59444,0dd03c9dc463ab5efcd15f3343035ffa,paid_subscription,2025-10-31T00:00:00Z,2189.0,USD
Google Ads upload path:
Tools & Settings → Conversions → Upload conversions → Import
Customer Match CSV (Retargeting Audiences)
For uploading audience lists to Google Ads.
Minimal columns (email only):
Email
Extended columns (better match rate):
Email,Phone,First Name,Last Name,Country,Zip
Format requirements:
- Email: SHA256 hash (32 hex chars, lowercase) OR plaintext (Google hashes it)
- Phone: SHA256 hash OR E.164 format (
+14155551234) - First Name / Last Name: Plaintext, lowercase, trimmed
- Country: 2-letter ISO code (
US,GB, etc.) - Zip: 5-digit US or local format
Example (hashed):
Email,Phone
ed8e83c2f4cb7b9f43cdc75c148b0b09,628923b3c489bda7dd9ebba89cb5b46c
1bffb899c9248b28e37cda02dbd59444,0dd03c9dc463ab5efcd15f3343035ffa
Google Ads upload path:
Tools & Settings → Audience Manager → Customer Match → Email list
Meta Custom Audiences CSV
For uploading to Meta Ads Manager.
Columns:
email,phone,fn,ln,country,zip
Format requirements:
- email: SHA256 hash (lowercase hex) OR plaintext lowercase
- phone: Digits only, no formatting (
14155551234) - fn / ln: Lowercase, trimmed
- country: 2-letter ISO lowercase (
us) - zip: 5-digit
Example:
email,phone,fn,ln,country,zip
ed8e83c2f4cb7b9f43cdc75c148b0b09,14155551234,john,doe,us,94105
Project Data Schemas
users.csv (~5,000 records)
User master file with acquisition data.
| Field | Type | Description | Example |
|---|---|---|---|
| user_id | UUID | Unique identifier | 208763df-9843-4c82-b4f1-bc6382a44acf |
| String | SHA256 hash (32 chars) | 0f9f75d98cacdbd135ccbf18f1aa2e54 |
|
| phone | String | SHA256 hash (32 chars) | eb18808fce984c7887799fe9e45f3d66 |
| signup_date | Date | Registration date | 2024-11-15 |
| traffic_source | String | Acquisition channel | organic, paid_search, paid_social, direct, referral |
| utm_source | String | UTM source | google, facebook, linkedin |
| utm_medium | String | UTM medium | cpc, organic, social, referral |
| utm_campaign | String | Campaign ID | google_ads_q4, fb_retargeting |
events.csv (~57,000 records)
Event stream with funnel progression.
| Field | Type | Description | Example |
|---|---|---|---|
| event_id | UUID | Unique event ID | 22794184-df27-4329-86b1-acccd60b79b2 |
| user_id | UUID | FK to users | a0505dd5-4327-4f86-82cc-bf39ba62c92e |
| event_name | String | Event type | page_view, pricing_view, checkout_start, form_submit, conversion |
| page_url | String | Page path | /, /pricing, /checkout, /success |
| timestamp | DateTime | ISO 8601 UTC | 2024-11-15T14:32:00Z |
| session_id | UUID | Groups session events | 80ea1bd9-d628-4ef6-bf26-64d928490205 |
| conversion_value | Numeric | USD (conversions only) | 150.00 or empty |
Funnel stages (event_name values):
page_view- Landing page visitpricing_view- Viewed pricing pagecheckout_start- Started checkoutform_submit- Submitted formconversion- Completed purchase
daily_metrics.csv (~60 records)
Daily aggregated metrics with engineered anomalies.
| Field | Type | Description |
|---|---|---|
| date | Date | Metric date |
| sessions | Integer | Daily sessions |
| users | Integer | Unique users |
| conversions | Integer | Daily conversions |
| revenue | Numeric | Daily revenue (USD) |
| conversion_rate | Numeric | Conversions / users |
| avg_order_value | Numeric | Revenue / conversions |
Engineered anomalies:
- Nov 15: -63% sessions (signup flow bug)
- Nov 21: +99% conversions (onboarding improvement)
- Nov 28-30: -72% conversion rate (activation issue)
trial_users.csv (~500 records)
Trial user conversion data (Demo 4).
| Field | Type | Description |
|---|---|---|
| user_id | UUID | Unique identifier |
| signup_date | Date | Trial start date |
| plan_type | String | Always free_trial |
| converted | Boolean | Whether converted to paid |
| conversion_date | Date | When converted (nullable) |
| days_to_convert | Integer | Days from signup to conversion |
feature_usage.csv (~2,500 records)
Feature adoption events (Demo 4).
| Field | Type | Description |
|---|---|---|
| user_id | UUID | FK to trial_users |
| feature_name | String | Feature used |
| first_used_date | Date | First usage date |
| usage_count | Integer | Total uses |
| days_since_signup_first_use | Integer | Days from signup to first use |
Key features:
create_form_onboarding- Created first formpublish_form- Published a formembed_form- Embedded form on siteconfigure_integration- Set up integration (aha moment)view_analytics- Viewed form analytics
Aha moment pattern: Users who configure_integration within 3 days convert at 70% vs 19% baseline (3.7x lift).
utm_data.csv (~12 records)
Campaign UTM data with intentional inconsistencies (Demo 5).
| Field | Type | Description |
|---|---|---|
| url | String | Landing page URL |
| utm_source | String | Source parameter |
| utm_medium | String | Medium parameter |
| utm_campaign | String | Campaign parameter |
| session_count | Integer | Sessions with this UTM |
Engineered issues:
- Source fragmentation:
linkedinvsLinkedInvsLINKEDIN - Typos:
product_upd_decinstead ofproduct_update_dec
Common Export Patterns
High-Value Converters (Enhanced Conversions)
SELECT
u.email AS Email,
u.phone AS Phone,
'paid_subscription' AS "Conversion Name",
e.timestamp AS "Conversion Time",
e.conversion_value AS "Conversion Value",
'USD' AS "Conversion Currency"
FROM users u
JOIN events e ON u.user_id = e.user_id
WHERE e.event_name = 'conversion'
AND e.conversion_value > 100
ORDER BY e.conversion_value DESC
Retargeting Audience (Customer Match)
WITH pricing_views AS (
SELECT user_id, COUNT(*) as view_count
FROM events
WHERE event_name = 'pricing_view'
GROUP BY user_id
HAVING COUNT(*) >= 2
),
checkout_starters AS (
SELECT DISTINCT user_id FROM events WHERE event_name = 'checkout_start'
),
converters AS (
SELECT DISTINCT user_id FROM events WHERE event_name = 'conversion'
)
SELECT u.email AS Email, u.phone AS Phone
FROM users u
JOIN pricing_views pv ON u.user_id = pv.user_id
JOIN checkout_starters cs ON u.user_id = cs.user_id
LEFT JOIN converters c ON u.user_id = c.user_id
WHERE c.user_id IS NULL
File Locations
| File | Location | Records |
|---|---|---|
| users.csv | data/users.csv |
~5,000 |
| events.csv | data/events.csv |
~57,000 |
| daily_metrics.csv | data/daily_metrics.csv |
~60 |
| trial_users.csv | data/trial_users.csv |
~500 |
| feature_usage.csv | data/feature_usage.csv |
~2,500 |
| utm_data.csv | data/utm_data.csv |
~12 |
BigQuery Location
Project: agents-webinar-2025
Dataset: webinar_demos
Tables: users, events, daily_metrics, trial_users, feature_usage