Claude Code Plugins

Community-maintained marketplace

Feedback

convex-expert-2025

@Ghostspeak/GhostSpeak
2
0

Expert Convex backend development for December 2025. Use when (1) Building Convex queries, mutations, or actions, (2) Defining schemas and validators, (3) Integrating Convex with React/Next.js, (4) Implementing authentication with Convex Auth or Clerk, (5) Building AI agents with persistent memory, (6) Using file storage, scheduling, or workflows, (7) Optimizing database queries with indexes, or any Convex backend architecture questions.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name convex-expert-2025
description Expert Convex backend development for December 2025. Use when (1) Building Convex queries, mutations, or actions, (2) Defining schemas and validators, (3) Integrating Convex with React/Next.js, (4) Implementing authentication with Convex Auth or Clerk, (5) Building AI agents with persistent memory, (6) Using file storage, scheduling, or workflows, (7) Optimizing database queries with indexes, or any Convex backend architecture questions.

Convex Expert Guide - December 2025

What is Convex?

Convex is a full-stack TypeScript backend platform with:

  • Reactive database - Real-time subscriptions, automatic cache invalidation
  • Serverless functions - Queries, mutations, actions with TypeScript
  • ACID transactions - Every mutation is a transaction, automatic conflict resolution
  • Type safety - End-to-end types from schema to React hooks
  • Built-in features - Auth, file storage, scheduling, vector search, workflows

Function Types

Type Purpose Database External APIs Deterministic
query Read data ✅ Read ✅ Required
mutation Write data ✅ Read/Write ✅ Required
action Side effects Via runQuery/runMutation
httpAction HTTP endpoints Via ctx

Quick Patterns

Schema Definition

// convex/schema.ts
import { defineSchema, defineTable } from "convex/server";
import { v } from "convex/values";

export default defineSchema({
  users: defineTable({
    name: v.string(),
    email: v.string(),
    role: v.union(v.literal("admin"), v.literal("user")),
    profileId: v.optional(v.id("profiles")),
  })
    .index("by_email", ["email"])
    .index("by_role", ["role"]),

  messages: defineTable({
    authorId: v.id("users"),
    body: v.string(),
    channel: v.string(),
  })
    .index("by_channel", ["channel"])
    .searchIndex("search_body", { searchField: "body" }),
});

Query

// convex/messages.ts
import { query } from "./_generated/server";
import { v } from "convex/values";

export const list = query({
  args: { channel: v.string(), limit: v.optional(v.number()) },
  handler: async (ctx, args) => {
    return await ctx.db
      .query("messages")
      .withIndex("by_channel", (q) => q.eq("channel", args.channel))
      .order("desc")
      .take(args.limit ?? 50);
  },
});

Mutation

// convex/messages.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";

export const send = mutation({
  args: { body: v.string(), channel: v.string() },
  handler: async (ctx, args) => {
    const identity = await ctx.auth.getUserIdentity();
    if (!identity) throw new Error("Unauthorized");

    return await ctx.db.insert("messages", {
      authorId: identity.subject,
      body: args.body,
      channel: args.channel,
    });
  },
});

Action

// convex/ai.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { api, internal } from "./_generated/api";

export const generateResponse = action({
  args: { prompt: v.string(), threadId: v.id("threads") },
  handler: async (ctx, args) => {
    // Call external API
    const response = await fetch("https://api.openai.com/v1/chat/completions", {
      method: "POST",
      headers: { Authorization: `Bearer ${process.env.OPENAI_API_KEY}` },
      body: JSON.stringify({ model: "gpt-4", messages: [{ role: "user", content: args.prompt }] }),
    });
    const data = await response.json();
    
    // Write result via mutation
    await ctx.runMutation(internal.messages.saveAIResponse, {
      threadId: args.threadId,
      content: data.choices[0].message.content,
    });
  },
});

React Integration

// app/page.tsx
"use client";
import { useQuery, useMutation } from "convex/react";
import { api } from "../convex/_generated/api";

export default function Chat() {
  const messages = useQuery(api.messages.list, { channel: "general" });
  const sendMessage = useMutation(api.messages.send);

  if (messages === undefined) return <div>Loading...</div>;

  return (
    <div>
      {messages.map((msg) => <p key={msg._id}>{msg.body}</p>)}
      <button onClick={() => sendMessage({ body: "Hello!", channel: "general" })}>
        Send
      </button>
    </div>
  );
}

Reference Files

Load based on task:

Core Concepts

Reactivity

  • useQuery creates a WebSocket subscription
  • UI updates automatically when data changes
  • No manual cache invalidation needed
  • All subscriptions update atomically

Determinism

  • Queries and mutations must be deterministic
  • No Math.random(), Date.now(), or fetch allowed
  • Use _creationTime instead of Date.now()
  • Actions are the escape hatch for non-deterministic work

Transactions

  • Every mutation is an ACID transaction
  • Automatic optimistic concurrency control
  • Retries on conflicts
  • No BEGIN/COMMIT needed

Type Safety

  • Schema generates TypeScript types
  • Doc<"tableName"> for document types
  • Id<"tableName"> for ID types
  • End-to-end type checking from schema to React

Validator Reference

Validator TypeScript Type Example
v.string() string "hello"
v.number() number 42
v.boolean() boolean true
v.null() null null
v.id("table") Id<"table"> Document ID
v.array(v.string()) string[] ["a", "b"]
v.object({...}) {...} { name: "x" }
v.optional(v.X()) X | undefined Optional field
v.union(v.X(), v.Y()) X | Y Union type
v.literal("x") "x" Exact value
v.any() any Any value
v.bytes() ArrayBuffer Binary data
v.record(k, v) Record<K, V> Key-value map

Decision Framework

When to Use Each Function Type

Need to read data?
├─ Yes → query
│   └─ Need real-time updates? → useQuery (React)
│   └─ One-time fetch? → fetchQuery (Server)
└─ No
    └─ Need to write data?
        ├─ Yes → mutation
        │   └─ Also need external API? → mutation + scheduler.runAfter(0, action)
        └─ No
            └─ Need external API? → action
                └─ Need durability? → Workflow component

Internal vs Public Functions

Use Case Function Type
Client can call query, mutation, action
Backend only internalQuery, internalMutation, internalAction
Scheduled work Internal functions
Security-sensitive Internal functions

Project Structure

my-app/
├── convex/
│   ├── _generated/           # Auto-generated (don't edit)
│   │   ├── api.d.ts
│   │   ├── api.js
│   │   ├── dataModel.d.ts
│   │   └── server.d.ts
│   ├── schema.ts             # Database schema
│   ├── auth.ts               # Auth configuration
│   ├── users.ts              # User functions
│   ├── messages.ts           # Message functions
│   ├── crons.ts              # Scheduled jobs
│   ├── http.ts               # HTTP endpoints
│   └── model/                # Business logic (recommended)
│       ├── users.ts
│       └── messages.ts
├── app/                      # Next.js app
│   ├── ConvexClientProvider.tsx
│   └── page.tsx
└── .env.local
    └── NEXT_PUBLIC_CONVEX_URL=...

CLI Commands

# Initialize Convex in project
npx convex init

# Start development server (watches for changes)
npx convex dev

# Deploy to production
npx convex deploy

# Open dashboard
npx convex dashboard

# Run a function manually
npx convex run messages:list '{"channel": "general"}'

# Import data
npx convex import --table messages data.json

# Export data
npx convex export --path ./backup

Environment Variables

# .env.local (development)
NEXT_PUBLIC_CONVEX_URL=https://your-project.convex.cloud

# Set in Convex dashboard for production
OPENAI_API_KEY=sk-...
CLERK_SECRET_KEY=sk_...

Access in functions:

const apiKey = process.env.OPENAI_API_KEY;