Claude Code Plugins

Community-maintained marketplace

Feedback

Analyze and enforce numerical stability for time-dependent PDE simulations. Use when selecting time steps, choosing explicit/implicit schemes, diagnosing numerical blow-up, checking CFL/Fourier criteria, von Neumann analysis, matrix conditioning, or detecting stiffness in advection/diffusion/reaction problems.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name numerical-stability
description Analyze and enforce numerical stability for time-dependent PDE simulations. Use when selecting time steps, choosing explicit/implicit schemes, diagnosing numerical blow-up, checking CFL/Fourier criteria, von Neumann analysis, matrix conditioning, or detecting stiffness in advection/diffusion/reaction problems.
allowed-tools Read, Bash, Write, Grep, Glob

Numerical Stability

Goal

Provide a repeatable checklist and script-driven checks to keep time-dependent simulations stable and defensible.

Requirements

  • Python 3.8+
  • NumPy (for matrix_condition.py and von_neumann_analyzer.py)
  • See scripts/requirements.txt for dependencies

Inputs to Gather

Input Description Example
Grid spacing dx Spatial discretization 0.01 m
Time step dt Temporal discretization 1e-4 s
Velocity v Advection speed 1.0 m/s
Diffusivity D Thermal/mass diffusivity 1e-5 m²/s
Reaction rate k First-order rate constant 100 s⁻¹
Dimensions 1D, 2D, or 3D 2
Scheme type Explicit or implicit explicit

Decision Guidance

Choosing Explicit vs Implicit

Is the problem stiff (fast + slow dynamics)?
├── YES → Use implicit or IMEX scheme
│         └── Check conditioning with matrix_condition.py
└── NO → Is CFL/Fourier satisfied with reasonable dt?
    ├── YES → Use explicit scheme (cheaper per step)
    └── NO → Consider implicit or reduce dx

Stability Limit Quick Reference

Physics Number Explicit Limit (1D) Formula
Advection CFL C ≤ 1 C = v·dt/dx
Diffusion Fourier Fo ≤ 0.5 Fo = D·dt/dx²
Reaction Reaction R ≤ 1 R = k·dt

Multi-dimensional correction: For d dimensions, diffusion limit is Fo ≤ 1/(2d).

Script Outputs (JSON Fields)

Script Key Outputs
scripts/cfl_checker.py metrics.cfl, metrics.fourier, recommended_dt, stable
scripts/von_neumann_analyzer.py results.max_amplification, results.stable
scripts/matrix_condition.py results.condition_number, results.is_symmetric
scripts/stiffness_detector.py results.stiffness_ratio, results.stiff, results.recommendation

Workflow

  1. Identify dominant physics (advection vs diffusion vs reaction)
  2. Run CFL checker with scripts/cfl_checker.py
  3. Compare to limits and adjust dt if needed
  4. Check stiffness with scripts/stiffness_detector.py if multiple scales
  5. Analyze custom schemes with scripts/von_neumann_analyzer.py
  6. Check conditioning with scripts/matrix_condition.py for implicit solves
  7. Document the stability verdict and recommended time step

Conversational Workflow Example

User: My phase-field simulation is blowing up after 100 steps. I'm using explicit Euler with dx=0.01, dt=1e-4, and diffusivity D=1e-3.

Agent workflow:

  1. Check stability criteria:
    python3 scripts/cfl_checker.py --dx 0.01 --dt 1e-4 --diffusivity 1e-3 --dimensions 2 --json
    
  2. Interpret results:
    • Fourier number: Fo = 1e-3 × 1e-4 / (0.01)² = 1.0
    • 2D limit: Fo ≤ 0.25
    • Violation: Fo = 1.0 > 0.25, unstable!
  3. Recommend fix:
    • Reduce dt to 2.5e-5 (to get Fo = 0.25)
    • Or increase dx, or switch to implicit

Pre-Simulation Stability Checklist

  • Identify dominant physics and nondimensional groups
  • Compute CFL/Fourier/Reaction numbers with cfl_checker.py
  • If explicit and limit violated, reduce dt or change scheme
  • If stiffness ratio > 1000, select implicit/stiff integrator
  • For custom schemes, verify amplification factor ≤ 1
  • Document stability reasoning with inputs and outputs

CLI Examples

# Check CFL/Fourier for 2D diffusion-advection
python3 scripts/cfl_checker.py --dx 0.1 --dt 0.01 --velocity 1.0 --diffusivity 0.1 --dimensions 2 --json

# Von Neumann analysis for custom 3-point stencil
python3 scripts/von_neumann_analyzer.py --coeffs 0.2,0.6,0.2 --dx 1.0 --nk 128 --json

# Detect stiffness from eigenvalue estimates
python3 scripts/stiffness_detector.py --eigs=-1,-1000 --json

# Check matrix conditioning for implicit system
python3 scripts/matrix_condition.py --matrix A.npy --norm 2 --json

Error Handling

Error Cause Resolution
dx and dt must be positive Zero or negative values Provide valid positive numbers
No stability criteria applied Missing velocity/diffusivity Provide at least one physics parameter
Matrix file not found Invalid path Check matrix file exists
Could not compute eigenvalues Singular or ill-formed matrix Check matrix validity

Interpretation Guidance

Scenario Meaning Action
stable: true All checked criteria satisfied Proceed with simulation
stable: false At least one limit violated Reduce dt or change scheme
stable: null No criteria could be applied Provide more physics inputs
Stiffness ratio > 1000 Problem is stiff Use implicit integrator
Condition number > 10⁶ Ill-conditioned Use scaling/preconditioning

Limitations

  • Explicit schemes only for CFL/Fourier checks (implicit is unconditionally stable)
  • Von Neumann analysis assumes linear, constant-coefficient, periodic BCs
  • Stiffness detection requires eigenvalue estimates from user

References

  • references/stability_criteria.md - Decision thresholds and formulas
  • references/common_pitfalls.md - Frequent failure modes and fixes
  • references/scheme_catalog.md - Stability properties of common schemes

Version History

  • v1.1.0 (2024-12-24): Enhanced documentation, decision guidance, examples
  • v1.0.0: Initial release with 4 stability analysis scripts