| name | kaizen |
| description | Kailash Kaizen - production-ready AI agent framework with signature-based programming, multi-agent coordination, and enterprise features. Use when asking about 'AI agents', 'agent framework', 'BaseAgent', 'multi-agent systems', 'agent coordination', 'signatures', 'agent signatures', 'RAG agents', 'vision agents', 'audio agents', 'multimodal agents', 'agent prompts', 'prompt optimization', 'chain of thought', 'ReAct pattern', 'Planning agent', 'PEV agent', 'Tree-of-Thoughts', 'pipeline patterns', 'supervisor-worker', 'router pattern', 'ensemble pattern', 'blackboard pattern', 'parallel execution', 'agent-to-agent communication', 'A2A protocol', 'streaming agents', 'agent testing', 'agent memory', or 'agentic workflows'. |
Kailash Kaizen - AI Agent Framework
Kaizen is a production-ready AI agent framework built on Kailash Core SDK that provides signature-based programming and multi-agent coordination.
๐ v0.6.0 Highlights
Enhanced Autonomy & Memory Systems (Released 2025-10-29):
Interrupt Mechanism: Complete graceful shutdown with Ctrl+C handling, timeout/budget auto-stop, checkpoint preservation
- 3 interrupt sources (USER, SYSTEM, PROGRAMMATIC)
- 2 shutdown modes (GRACEFUL, IMMEDIATE)
- Signal propagation across multi-agent systems
- 34 E2E tests production-validated
Persistent Buffer Memory: DataFlow-backed conversation persistence with dual-buffer architecture
- In-memory buffer + database storage
- Auto-persist (configurable intervals)
- JSONL compression (60%+ reduction)
- Cross-session persistence
- 28 E2E tests with real database
Enhanced Hooks: PRE/POST_INTERRUPT and PRE/POST_CHECKPOINT_SAVE events
See kaizen-interrupt-mechanism and kaizen-persistent-memory for details.
Overview
Kaizen enables building sophisticated AI agents with:
- Signature-Based Programming: Type-safe agent interfaces with automatic validation
- BaseAgent Architecture: Production-ready agent foundation with error handling
- Multi-Agent Coordination: Supervisor-worker, agent-to-agent protocols
- Multimodal Processing: Vision, audio, and text processing
- Enterprise Features: Cost tracking, audit trails, streaming responses
- Automatic Optimization: Prompt refinement and performance tuning
Quick Start
Basic Agent
from kaizen.core.base_agent import BaseAgent
from kaizen.signatures import Signature, InputField, OutputField
from dataclasses import dataclass
# Define agent signature (type-safe interface)
class SummarizeSignature(Signature):
text: str = InputField(description="Text to summarize")
summary: str = OutputField(description="Generated summary")
# Define configuration
@dataclass
class SummaryConfig:
llm_provider: str = "openai"
model: str = "gpt-4"
temperature: float = 0.7
# Create agent with signature
class SummaryAgent(BaseAgent):
def __init__(self, config: SummaryConfig):
super().__init__(
config=config,
signature=SummarizeSignature()
)
# Execute
agent = SummaryAgent(SummaryConfig())
result = agent.run(text="Long text here...")
print(result['summary'])
Pipeline Patterns (Orchestration)
from kaizen.orchestration.pipeline import Pipeline
# Ensemble: Multi-perspective collaboration
pipeline = Pipeline.ensemble(
agents=[code_expert, data_expert, writing_expert, research_expert],
synthesizer=synthesis_agent,
discovery_mode="a2a", # A2A semantic matching
top_k=3 # Select top 3 agents
)
# Execute - automatically selects best agents for task
result = pipeline.run(task="Analyze codebase", input="repo_path")
print(result['result']) # Synthesized result from multiple perspectives
# Router: Intelligent task delegation
router = Pipeline.router(
agents=[code_agent, data_agent, writing_agent],
routing_strategy="semantic" # A2A-based routing
)
result = router.run(task="Analyze sales data") # Routes to data_agent
# Blackboard: Iterative problem-solving
blackboard = Pipeline.blackboard(
agents=[solver, analyzer, optimizer],
controller=controller,
max_iterations=10,
discovery_mode="a2a"
)
result = blackboard.run(task="Optimize query", input="slow_query.sql")
Reference Documentation
Comprehensive Guides
For in-depth documentation, see apps/kailash-kaizen/docs/:
Core Guides:
- BaseAgent Architecture - Complete unified agent system guide
- Multi-Agent Coordination - Google A2A protocol, 5 coordination patterns
- Signature Programming - Complete signature system guide
- Hooks System Guide - Event-driven observability framework
- Integration Patterns - DataFlow, Nexus, MCP integration
Reference Documentation:
- API Reference - Complete API documentation
- Hooks System - Lifecycle event hooks reference
- Configuration Guide - All configuration options
- Troubleshooting - Common issues and solutions
Quick Start (Skills)
- kaizen-quickstart-template - Quick start guide with templates
- kaizen-baseagent-quick - BaseAgent fundamentals
- kaizen-signatures - Signature-based programming
- kaizen-agent-execution - Agent execution patterns
- README - Framework overview
Agent Patterns
- kaizen-agent-patterns - Common agent design patterns
- kaizen-chain-of-thought - Chain of thought reasoning
- kaizen-react-pattern - ReAct (Reason + Act) pattern
- kaizen-rag-agent - Retrieval-Augmented Generation agents
- kaizen-config-patterns - Agent configuration strategies
Multi-Agent Systems & Orchestration
- kaizen-multi-agent-setup - Multi-agent system setup
- kaizen-supervisor-worker - Supervisor-worker coordination
- kaizen-a2a-protocol - Agent-to-agent communication
- kaizen-shared-memory - Shared memory between agents
Pipeline Patterns (9 Composable Patterns):
- Ensemble: Multi-perspective collaboration with A2A discovery + synthesis
- Blackboard: Controller-driven iterative problem-solving
- Router (Meta-Controller): Intelligent task routing via A2A matching
- Parallel: Concurrent execution with aggregation
- Sequential: Linear agent chain
- Supervisor-Worker: Hierarchical coordination
- Handoff: Agent handoff with context transfer
- Consensus: Voting-based decision making
- Debate: Adversarial deliberation
A2A-Integrated Patterns (4): Ensemble, Blackboard, Router, Supervisor-Worker
Multimodal Processing
- kaizen-multimodal-orchestration - Multimodal coordination
- kaizen-vision-processing - Vision and image processing
- kaizen-audio-processing - Audio processing agents
- kaizen-multimodal-pitfalls - Common pitfalls and solutions
Advanced Features
- kaizen-control-protocol - Bidirectional agent โ client communication
- kaizen-tool-calling - Autonomous tool execution with approval workflows
- kaizen-memory-system - Persistent memory, learning, FAQ detection, preference adaptation
- kaizen-checkpoint-resume - Checkpoint & resume for long-running agents, failure recovery
- kaizen-interrupt-mechanism - ๐ v0.6.0: Graceful shutdown, Ctrl+C handling, timeout/budget auto-stop, checkpoint preservation
- kaizen-persistent-memory - ๐ v0.6.0: DataFlow-backed conversation persistence, dual-buffer architecture, auto-persist
- kaizen-streaming - Streaming agent responses
- kaizen-cost-tracking - Cost monitoring and optimization
- kaizen-ux-helpers - UX enhancement utilities
Observability & Monitoring
- kaizen-observability-hooks - Lifecycle event hooks, hook management, and production security (RBAC, isolation, metrics auth)
- kaizen-observability-tracing - Distributed tracing with OpenTelemetry and Jaeger
- kaizen-observability-metrics - Prometheus metrics collection with p50/p95/p99 percentiles
- kaizen-observability-logging - Structured JSON logging for ELK Stack integration
- kaizen-observability-audit - Compliance audit trails (SOC2, GDPR, HIPAA, PCI-DSS)
Testing & Quality
- kaizen-testing-patterns - Testing AI agents
Key Concepts
Signature-Based Programming
Signatures define type-safe interfaces for agents:
- Input: Define expected inputs with descriptions
- Output: Specify output format and structure
- Validation: Automatic type checking and validation
- Optimization: Framework can optimize prompts automatically
BaseAgent Architecture
Foundation for all Kaizen agents:
- Error Handling: Built-in retry logic and error recovery
- Audit Trails: Automatic logging of agent actions
- Cost Tracking: Monitor API usage and costs
- Streaming: Support for streaming responses
- Memory: State management across invocations
- Hooks System: Zero-code-change observability and lifecycle management
Autonomy Infrastructure (6 Subsystems)
1. Hooks System - Event-driven observability framework
- Zero-code-change monitoring via lifecycle events (PRE/POST hooks)
- 6 builtin hooks: Logging, Metrics, Cost, Performance, Audit, Tracing
- Production security: RBAC, Ed25519 signatures, process isolation, rate limiting
- Performance: <0.01ms overhead (625x better than 10ms target)
- See:
docs/guides/hooks-system-guide.md
2. Checkpoint System - Persistent state management
- Save/load/fork agent state for failure recovery and experimentation
- 4 storage backends: Filesystem, Redis, PostgreSQL, S3
- Automatic compression and incremental checkpoints
- State manager with deduplication and versioning
- See:
docs/guides/state-persistence-guide.md
3. Interrupt Mechanism - Graceful shutdown and execution control
- 3 interrupt sources: USER (Ctrl+C), SYSTEM (timeout/budget), PROGRAMMATIC (API)
- 2 shutdown modes: GRACEFUL (finish cycle + checkpoint) vs IMMEDIATE (stop now)
- Signal propagation across multi-agent hierarchies
- 34 E2E tests production-validated, examples in
examples/autonomy/interrupts/ - See:
docs/guides/interrupt-mechanism-guide.md
4. Memory System - 3-tier hierarchical storage (Hot/Warm/Cold)
- Hot tier: In-memory buffer (<1ms retrieval, last 100 messages)
- Warm tier: Database (10-50ms, agent-specific history with JSONL compression)
- Cold tier: Object storage (100ms+, long-term archival with S3/MinIO)
- DataFlow-backed with auto-persist and cross-session continuity
- 28 E2E tests with real database operations
- See:
docs/guides/memory-and-learning-system.md
5. Planning Agents - Structured workflow orchestration
- PlanningAgent: Plan before you act (pre-execution validation)
- PEVAgent: Plan, Execute, Verify, Refine (iterative refinement)
- Multi-step decomposition, validation, and replanning
- Best for: Research, compliance, code generation
- See:
docs/guides/planning-agents-guide.md
6. Meta-Controller Routing - Intelligent task delegation
- A2A-based semantic capability matching (no hardcoded if/else)
- Automatic agent discovery, ranking, and selection
- Fallback strategies and load balancing
- Integrated with Router, Ensemble, and Supervisor-Worker patterns
- See:
docs/guides/meta-controller-routing-guide.md
Hooks System (Lifecycle Events)
Event-driven framework for zero-code-change observability with production security:
- Location:
kaizen.core.autonomy.hooks,kaizen.core.autonomy.hooks.security - Usage: Register hooks on PRE/POST lifecycle events (opt-in via
config.hooks_enabled=True) - Events: PRE/POST_AGENT_LOOP, PRE/POST_TOOL_USE, PRE/POST_CHECKPOINT_SAVE, PRE/POST_INTERRUPT
- Production Security: RBAC authorization, Ed25519 signature verification, process isolation with resource limits, API key authentication for metrics, sensitive data redaction, rate limiting, input validation, audit trails
- Compliance: PCI DSS 4.0, HIPAA ยง 164.312, GDPR Article 32, SOC2
- Examples:
examples/autonomy/hooks/(audit_trail, distributed_tracing, prometheus_metrics) - Docs:
docs/features/hooks-system.md,docs/guides/hooks-system-guide.md
Multi-Agent Patterns
- Supervisor-Worker: Central coordinator with specialized workers
- Agent-to-Agent: Direct peer communication
- Shared Memory: Coordinated state management
- Hierarchical: Nested agent structures
Multimodal Support
- Vision: Image understanding and analysis
- Audio: Speech and sound processing
- Text: Natural language processing
- Orchestration: Coordinating multiple modalities
When to Use This Skill
Use Kaizen when you need to:
- Build AI agents with type-safe interfaces
- Implement multi-agent systems with orchestration patterns
- Process multimodal inputs (vision, audio, text)
- Create RAG (Retrieval-Augmented Generation) systems
- Implement chain-of-thought reasoning
- Build supervisor-worker or ensemble architectures
- Track costs and performance of AI agents
- Add zero-code-change observability to agents (hooks system)
- Monitor, trace, and audit agent behavior in production
- Secure agent observability with RBAC, process isolation, and compliance controls
- Create production-ready agentic applications
Use Pipeline Patterns When:
- Ensemble: Need diverse perspectives synthesized (code review, research, analysis)
- Blackboard: Iterative problem-solving (optimization, debugging, planning)
- Router: Intelligent task delegation to specialists
- Parallel: Bulk processing or voting-based consensus
- Sequential: Linear workflows with dependency chains
Integration Patterns
With DataFlow (Data-Driven Agents)
from kaizen.core.base_agent import BaseAgent
from dataflow import DataFlow
from dataclasses import dataclass
@dataclass
class DataAgentConfig:
llm_provider: str = "openai"
model: str = "gpt-4"
# Agent that works with database
class DataAgent(BaseAgent):
def __init__(self, config: DataAgentConfig, db: DataFlow):
self.db = db
super().__init__(config=config, signature=MySignature())
With Nexus (Multi-Channel Agents)
from kaizen.core.base_agent import BaseAgent
from nexus import Nexus
# Deploy agents via API/CLI/MCP
agent_workflow = create_agent_workflow()
nexus = Nexus([agent_workflow])
nexus.run() # Agents available via all channels
With Core SDK (Custom Workflows)
from kaizen.core.base_agent import BaseAgent
from kailash.workflow.builder import WorkflowBuilder
# Embed agents in workflows
workflow = WorkflowBuilder()
workflow.add_node("KaizenAgent", "agent1", {
"agent": my_agent,
"input": "..."
})
Critical Rules
- โ Define signatures before implementing agents
- โ Extend BaseAgent for production agents
- โ Use type hints in signatures for validation
- โ Track costs in production environments
- โ Test agents with real infrastructure (NO MOCKING)
- โ NEVER skip signature definitions
- โ NEVER ignore cost tracking in production
- โ NEVER mock LLM calls in integration tests
Version Compatibility
- Current Version: Latest Kaizen release
- Core SDK Version: 0.9.25+
- Python: 3.8+
- LLM Support: OpenAI, Anthropic, local models
Related Skills
- 01-core-sdk - Core workflow patterns
- 02-dataflow - Database integration
- 03-nexus - Multi-channel deployment
- 05-mcp - MCP server integration
- 17-gold-standards - Best practices
Support
For Kaizen-specific questions, invoke:
kaizen-specialist- Kaizen framework implementationtesting-specialist- Agent testing strategiesframework-advisor- When to use Kaizen vs other frameworks