| name | claudy-orchestration |
| description | Use this skill when delegating to sub-agents that require more flexibility than the Task tool provides - when launching multiple agents in parallel, managing persistent sessions across calls, or coordinating complex multi-agent workflows with custom orchestration patterns. |
Claudy Orchestration
Multi-agent session manager for Claude Code. Spawn and manage persistent Claude agent sessions with automatic cleanup.
Quick Start
⚠️ IMPORTANT: Claudy works in two modes:
- CLI Mode (Always available, no setup needed) - Use
uvx claudycommands - MCP Mode (Optional, for Claude Code integration) - Add to
.mcp.json
If you don't have MCP configured, use CLI mode! It provides the same functionality.
Option 1: CLI Usage (No Setup Required)
# Start the server (required first step)
uvx claudy server start
# Call an agent session
uvx claudy call <name> "<message>" [--verbosity quiet|normal|verbose]
# List all sessions
uvx claudy list
# Get session status
uvx claudy status <name>
# Cleanup sessions
uvx claudy cleanup <name>
uvx claudy cleanup --all
# Stop the server
uvx claudy server stop
Option 2: MCP Integration (Optional)
Add to your .mcp.json for Claude Code integration:
{
"mcpServers": {
"claudy": {
"type": "stdio",
"command": "uvx",
"args": [
"--from",
"git+https://github.com/kangjihyeok/claude-agentic-skills.git@main#subdirectory=claudy",
"fastmcp",
"run",
"claudy.mcp_server:mcp"
]
}
}
}
MCP Tools
claudy_call
Send a message to an agent session (auto-creates if doesn't exist).
Parameters:
name(str): Session namemessage(str): Message to sendverbosity(str): "quiet", "normal", or "verbose" (default: "normal")fork(bool): Fork before sending (default: false)fork_name(str, optional): Name for forked sessionparent_session_id(str, optional): Explicit parent session to inherit context from
Returns: {"success": true, "name": "...", "response": "...", "session_id": "..."}
claudy_call_async
Start agent task in background, returns immediately for parallel execution.
Parameters:
name(str): Session namemessage(str): Message to sendverbosity(str): "quiet", "normal", or "verbose" (default: "normal")parent_session_id(str, optional): Explicit parent session to inherit context from
Returns: {"success": true, "name": "...", "status": "running"}
claudy_get_results
Wait for and aggregate results from multiple background agents (blocking until complete).
Parameters:
names(list[str]): List of session names to wait fortimeout(int, optional): Timeout in seconds
Returns: {"success": true, "results": {"name1": {...}, "name2": {...}}}
claudy_check_status
Check if background tasks are still running.
Parameters:
names(list[str], optional): Session names to check (if None, checks all)
Returns: {"success": true, "tasks": {"name1": "running", "name2": "completed"}}
claudy_list
List all active agent sessions.
Returns: {"success": true, "sessions": [...]}
claudy_status
Get detailed status of a specific session.
Parameters:
name(str): Session name
Returns: Session metadata (created_at, last_used, message_count, etc.)
claudy_share_context (NEW!)
Share context from one session that other sessions can access.
Parameters:
session_name(str): Name of the session sharing the contextcontext_key(str): Unique identifier for this context (e.g., "verification_findings", "test_results")context_data(dict): Dictionary containing the context to share
Returns: {"success": true, "context_key": "...", "session_name": "...", "message": "..."}
Use Cases:
- Verifier shares findings → Analyst validates them
- Generator shares solution → Tester shares results → Fixer accesses both
- Multiple specialists share analysis → Lead agent synthesizes
claudy_get_shared_context (NEW!)
Retrieve shared context from other sessions.
Parameters:
context_key(str): The context identifier to retrievesource_session(str, optional): Optional filter by source session name
Returns: {"success": true, "context_key": "...", "count": N, "contexts": [...]}
Each context contains:
session_name: Source sessionsession_id: Source session IDdata: The shared datatimestamp: When it was shared
claudy_cleanup
Cleanup one or all sessions.
Parameters:
name(str, optional): Session name to cleanupall(bool): Cleanup all sessions (default: false)
Returns: {"success": true, "message": "..."}
Usage Patterns
Basic Session Management
# Auto-create and call a session
Use claudy_call with name="researcher" and message="Search for latest AI papers"
# Check status
Use claudy_status with name="researcher"
# Cleanup
Use claudy_cleanup with name="researcher"
Context Preservation
1. claudy_call(name="memory_test", message="Remember this number: 42")
2. claudy_call(name="memory_test", message="What number did I ask you to remember?")
→ "42" ✓ Context preserved!
Inter-Session Context Sharing (NEW!)
# Verifier agent shares findings
claudy_call(name="verifier", message="Review code for bugs")
claudy_share_context(
session_name="verifier",
context_key="bug_findings",
context_data={"critical_bugs": [...], "warnings": [...]}
)
# Analyst agent validates findings
claudy_call(name="analyst", message=f"""
Review these bug findings and mark each as 'confirmed' or 'false_positive':
{claudy_get_shared_context("bug_findings", "verifier")}
""")
# Fixer accesses validated findings
claudy_call(name="fixer", message=f"""
Fix only the confirmed bugs:
{claudy_get_shared_context("validated_bugs", "analyst")}
""")
Session Forking
# Create base session
claudy_call(name="analysis", message="Analyze this codebase")
# Fork to explore alternatives
claudy_call(
name="analysis",
message="Try refactoring approach B",
fork=True,
fork_name="analysis_fork_b"
)
# Original session unchanged
claudy_call(name="analysis", message="Continue with approach A")
Parallel Execution
# Launch multiple agents in parallel
claudy_call_async('security', 'Audit code for vulnerabilities')
claudy_call_async('performance', 'Find performance bottlenecks')
claudy_call_async('docs', 'Generate API documentation')
# Collect all results
claudy_get_results(['security', 'performance', 'docs'])
IOI/Competitive Programming Pattern (NEW!)
Multi-stage workflow with specialized agents and context sharing. Based on solving Korean Olympiad in Informatics problems using iterative refinement.
## Agent Role Templates
# Code Generator Agent - Focuses on initial correctness
GENERATOR_PROMPT = """
You are an IOI algorithm expert specializing in generating optimal solutions.
PRIORITY: Correctness > Optimization
OUTPUT: Working code + complexity analysis + edge cases
Allowed Tools: Read, Grep, Glob, WebSearch
"""
# Strict Verifier Agent - Finds ALL issues (false positives OK)
VERIFIER_PROMPT = """
You are a strict IOI coach and automated judge combined.
PRIORITY: Find ALL potential issues, even if uncertain
OUTPUT: Categorized issues (Critical Logic Error, TLE/MLE, Implementation Bug, Edge Case)
Style: Adversarial, detailed, quote specific code sections
"""
# Analyst Agent - Validates verifier findings (prevents over-fixing!)
ANALYST_PROMPT = """
You are a senior IOI coach judging verification reports.
PRIORITY: Distinguish real issues from false positives
OUTPUT: Each finding marked as 'confirmed' or 'false_positive' with justification
Style: Evidence-based, conservative
"""
# Conservative Fixer Agent - Minimal changes, test after each
FIXER_PROMPT = """
You are a careful code improver for IOI solutions.
PRIORITY: Preserve working functionality, change ONE thing at a time
OUTPUT: Incremental fix + test + next fix (not bulk changes!)
Style: Conservative, test-driven
"""
# Lead Synthesizer Agent - Final integration and decision making
LEAD_PROMPT = """
You are the meta-coordinator for IOI problem solving.
PRIORITY: Synthesize all agent insights, make final decisions
ACCESS: All shared contexts from specialized agents
OUTPUT: Final solution that integrates verified improvements only
Style: Holistic, evidence-based
"""
## Complete IOI Workflow
# Step 1: Generate initial solution
Use claudy_call with name="code_generator" and GENERATOR_PROMPT + problem description
Use claudy_share_context to share the solution under key="solution_v1"
# Step 2: Self-critique
Use claudy_call with name="critic" and message including solution_v1
Use claudy_share_context to share critique under key="critique"
# Step 3: Strict verification
Use claudy_call with name="verifier" and message including solution + critique
Use claudy_share_context to share findings under key="verification_findings"
# Step 4: Analyst validation (CRITICAL - prevents over-fixing!)
Use claudy_call with name="analyst" and message:
"Review these findings and mark each as 'confirmed' or 'false_positive':
{claudy_get_shared_context('verification_findings', 'verifier')}"
Use claudy_share_context to share validated issues under key="confirmed_issues"
# Step 5: Incremental fixing with testing
baseline_score = test_solution(solution_v1)
For each confirmed issue (one at a time):
Use claudy_call with name="fixer" and message:
"Fix ONLY this issue: {issue}
Previous score: {current_score}
{claudy_get_shared_context('solution_v1')}
Provide updated code."
Test the fix
If score >= current_score:
Accept fix, update current_score
Use claudy_share_context with key="solution_v{iteration}"
Else:
Reject fix, continue to next issue
# Step 6: Lead agent final synthesis (if not 100% score)
If score < 100:
Use claudy_call with name="lead" and message:
"Synthesize all contexts and achieve 100 points:
{claudy_get_shared_context('solution_v1')}
{claudy_get_shared_context('critique')}
{claudy_get_shared_context('verification_findings')}
{claudy_get_shared_context('confirmed_issues')}
Test results: {all_test_results}
Make final improvement."
Key Lesson from Real Usage: The 44→23 point regression happened because we skipped Step 4 (Analyst validation) and applied all verifier findings at once in Step 5. The improved workflow fixes this by:
- Adding validation layer (Step 4)
- Applying changes incrementally with testing (Step 5)
- Lead agent synthesis with full context (Step 6)
Key Features
- Dual Mode: CLI (no setup) or MCP (Claude Code integration)
- Context Preservation: Agents remember full conversation history
- Session Forking: Branch conversations to explore alternative paths
- Auto Cleanup: 20-minute idle timeout prevents resource leaks
- Independent Sessions: Clean context, no automatic inheritance
- Parallel Execution: Run multiple agents concurrently with
claudy_call_async - Zero Configuration: CLI works out of the box with uvx
Configuration
Sessions auto-cleanup after 20 minutes of inactivity. To customize:
Edit claudy/config.py:
SESSION_IDLE_TIMEOUT = 1200 # 20 minutes in seconds
SESSION_CLEANUP_INTERVAL = 300 # 5 minutes
Architecture
[CLI Mode] [MCP Mode]
claudy CLI → HTTP Server Claude Code → stdio
↓ ↓
└──────── FastMCP Server ───────┘
↓
ClaudeSDKClient Sessions (in-memory)
↓
Auto cleanup (20min idle timeout)
Design:
- CLI Mode: HTTP server (starts with
claudy server start) - MCP Mode: Direct stdio communication (no HTTP server)
- Global session storage (shared across all connections)
- Background TTL cleanup task (20-minute idle timeout)
- Independent sessions (no automatic context inheritance)
Important Notes
Use CLI Mode if MCP is Not Configured
You don't need MCP to use claudy! If you see MCP tool errors:
- Start the HTTP server:
uvx claudy server start - Use CLI commands:
uvx claudy call <name> "<message>"
CLI mode provides identical functionality to MCP mode.
Server Start Required (CLI Mode)
For CLI usage, you must start the server first:
uvx claudy server start
Then you can use call, list, status, cleanup commands. The server will NOT auto-start.
Session Persistence
Sessions are in-memory only. They are lost when:
- Server stops
- Session idle for 20+ minutes
- Manual cleanup via
claudy_cleanup
MCP vs CLI Mode
| Feature | CLI Mode | MCP Mode |
|---|---|---|
| Setup | None (always works) | Requires .mcp.json configuration |
| Server | HTTP (manual start) | stdio (auto-managed by Claude Code) |
| Usage | uvx claudy call ... |
Use claudy_call tool |
| Functionality | ✅ Full | ✅ Full |
Both modes share the same session storage and features.
Troubleshooting
"Server is not running"
Run uvx claudy server start before using CLI commands.
Sessions disappearing
Sessions cleanup after 20 minutes of inactivity. Use them regularly or reduce SESSION_IDLE_TIMEOUT.
Fork fails
Ensure parent session has sent at least one message (session_id must exist).
Requirements
- Python 3.10+
- Claude Code 2.0+ (for claude-agent-sdk)
- fastmcp >= 2.12.0
- claude-agent-sdk >= 0.1.4
License
MIT License
Built with ❤️ using FastMCP and claude-agent-sdk