name: python-gotchas description: Complete Python gotchas reference. PROACTIVELY activate for: (1) Mutable default arguments, (2) Mutating lists while iterating, (3) is vs == comparison, (4) Late binding in closures, (5) Variable scope (LEGB), (6) Floating point precision, (7) Exception handling pitfalls, (8) Dict mutation during iteration, (9) Circular imports, (10) Class vs instance attributes. Provides: Problem explanations, code examples, fixes for each gotcha. Ensures bug-free Python code.
Quick Reference
| Gotcha | Problem | Fix |
|---|---|---|
| Mutable default | def f(x=[]) |
Use None, create in function |
| Iterate + mutate | Skips items | Iterate over copy items[:] |
is vs == |
Identity vs value | Use is only for None |
| Late binding | lambda: i captures var |
lambda i=i: i |
| Float precision | 0.1 + 0.2 != 0.3 |
math.isclose() |
| Dict mutation | RuntimeError | list(d.keys()) |
| Class attribute | Shared mutable | Init in __init__ |
| Falsy Values | Examples |
|---|---|
| Boolean | False |
| None | None |
| Numbers | 0, 0.0, 0j |
| Empty collections | "", [], {}, set() |
| Scope Rule | Order |
|---|---|
| LEGB | Local → Enclosing → Global → Built-in |
global |
Access module-level variable |
nonlocal |
Access enclosing function variable |
When to Use This Skill
Use for debugging and prevention:
- Understanding why code behaves unexpectedly
- Avoiding common Python pitfalls
- Reviewing code for subtle bugs
- Learning Python's evaluation rules
- Fixing mutable default arguments
Related skills:
- For fundamentals: see
python-fundamentals-313 - For testing: see
python-testing - For type hints: see
python-type-hints
Python Common Gotchas and Pitfalls
Overview
Python has several well-known pitfalls that trip up developers of all experience levels. Understanding these gotchas prevents subtle bugs and unexpected behavior.
1. Mutable Default Arguments
The Problem
# BAD: Mutable default argument
def add_item(item, items=[]):
items.append(item)
return items
# Unexpected behavior!
print(add_item("a")) # ['a']
print(add_item("b")) # ['a', 'b'] - NOT ['b']!
print(add_item("c")) # ['a', 'b', 'c']
Why It Happens
Default arguments are evaluated once when the function is defined, not each time it's called. The same list object is reused across all calls.
The Fix
# GOOD: Use None as default
def add_item(item, items=None):
if items is None:
items = []
items.append(item)
return items
# Works correctly
print(add_item("a")) # ['a']
print(add_item("b")) # ['b']
print(add_item("c")) # ['c']
Other Mutable Defaults
# BAD: All mutable types have this issue
def bad_dict(data={}): ...
def bad_set(data=set()): ...
def bad_class(config=SomeClass()): ...
# GOOD: Always use None
def good_dict(data=None):
if data is None:
data = {}
return data
def good_set(data=None):
if data is None:
data = set()
return data
2. Mutating Lists While Iterating
The Problem
# BAD: Modifying list during iteration
numbers = [1, 2, 3, 4, 5, 6]
for num in numbers:
if num % 2 == 0:
numbers.remove(num)
print(numbers) # [1, 3, 5] - missed 4!
Why It Happens
The iterator uses indices internally. When you remove an item, all subsequent indices shift, causing items to be skipped.
The Fixes
# GOOD: Iterate over a copy
numbers = [1, 2, 3, 4, 5, 6]
for num in numbers[:]: # Slice creates a copy
if num % 2 == 0:
numbers.remove(num)
print(numbers) # [1, 3, 5]
# GOOD: Use list comprehension (preferred)
numbers = [1, 2, 3, 4, 5, 6]
numbers = [num for num in numbers if num % 2 != 0]
print(numbers) # [1, 3, 5]
# GOOD: Use filter
numbers = [1, 2, 3, 4, 5, 6]
numbers = list(filter(lambda x: x % 2 != 0, numbers))
print(numbers) # [1, 3, 5]
# GOOD: Iterate backwards (for in-place modification)
numbers = [1, 2, 3, 4, 5, 6]
for i in range(len(numbers) - 1, -1, -1):
if numbers[i] % 2 == 0:
del numbers[i]
print(numbers) # [1, 3, 5]
3. is vs ==
The Problem
# Comparing values vs identity
a = [1, 2, 3]
b = [1, 2, 3]
print(a == b) # True - same values
print(a is b) # False - different objects
# Integer interning gotcha
x = 256
y = 256
print(x is y) # True (integers -5 to 256 are interned)
x = 257
y = 257
print(x is y) # False! (outside interning range)
The Rule
- Use
==to compare values - Use
isonly for identity (singletons likeNone,True,False)
# GOOD: Correct usage
if value is None:
...
if value == other_value:
...
# BAD: Don't use `is` for value comparison
if value is 0: # Wrong!
...
4. Variable Scope (LEGB)
The Problem
# Closure gotcha
functions = []
for i in range(3):
functions.append(lambda: i)
# All return the same value!
print([f() for f in functions]) # [2, 2, 2]
Why It Happens
The lambda captures the variable i, not its value. By the time lambdas are called, i is 2.
The Fixes
# GOOD: Capture value with default argument
functions = []
for i in range(3):
functions.append(lambda i=i: i) # Default arg captures value
print([f() for f in functions]) # [0, 1, 2]
# GOOD: Use functools.partial
from functools import partial
def return_value(x):
return x
functions = [partial(return_value, i) for i in range(3)]
print([f() for f in functions]) # [0, 1, 2]
UnboundLocalError
# BAD: This raises UnboundLocalError
x = 10
def increment():
x = x + 1 # Error! x is local but used before assignment
return x
# GOOD: Use global (sparingly)
def increment():
global x
x = x + 1
return x
# BETTER: Avoid global, pass as parameter
def increment(x):
return x + 1
5. String Concatenation
Implicit Concatenation Gotcha
# Missing comma creates concatenation
items = [
"apple"
"banana" # Oops! Missing comma
"cherry"
]
print(items) # ['applebanana', 'cherry']
# CORRECT
items = [
"apple",
"banana",
"cherry",
]
Type Mixing
# BAD: Can't concatenate str and int
name = "User"
count = 42
# message = "Hello " + name + ", you have " + count + " messages" # TypeError!
# GOOD: Use f-strings
message = f"Hello {name}, you have {count} messages"
# GOOD: Use str()
message = "Hello " + name + ", you have " + str(count) + " messages"
6. Late Binding in Closures
The Problem
# Class method gotcha
class MyClass:
def __init__(self, callbacks=[]): # BAD: Mutable default!
self.callbacks = callbacks
def add_callback(self, func):
self.callbacks.append(func)
obj1 = MyClass()
obj2 = MyClass()
obj1.add_callback(lambda: print("Hello"))
# obj2 also has the callback!
print(len(obj2.callbacks)) # 1
The Fix
class MyClass:
def __init__(self, callbacks=None):
self.callbacks = callbacks if callbacks is not None else []
def add_callback(self, func):
self.callbacks.append(func)
7. Boolean Evaluation
Falsy Values
# These are all falsy
falsy_values = [
False,
None,
0,
0.0,
0j,
"",
[],
{},
set(),
range(0),
]
# Gotcha: Empty collections are falsy
data = []
if data:
print("Has data") # Not printed
else:
print("No data") # Printed
# But None and empty are different!
if data is None:
print("Is None") # Not printed
elif data == []:
print("Is empty list") # Printed
Explicit Checks
# BAD: Ambiguous check
def process(items):
if not items: # Could be None OR empty
return
# GOOD: Be explicit about what you're checking
def process(items):
if items is None:
raise ValueError("items cannot be None")
if len(items) == 0:
return # Early return for empty list
8. Floating Point Precision
The Problem
# Floating point arithmetic isn't exact
print(0.1 + 0.2) # 0.30000000000000004
print(0.1 + 0.2 == 0.3) # False!
The Fixes
import math
from decimal import Decimal
# GOOD: Use math.isclose for comparisons
print(math.isclose(0.1 + 0.2, 0.3)) # True
# GOOD: Use Decimal for financial calculations
price = Decimal("19.99")
tax = Decimal("0.0875")
total = price * (1 + tax)
print(total) # 21.739125
# Round appropriately
print(round(total, 2)) # 21.74
9. Exception Handling
Bare Except
# BAD: Catches everything, including KeyboardInterrupt
try:
risky_operation()
except:
pass
# BAD: Too broad
try:
risky_operation()
except Exception:
pass # Silently ignores all errors
# GOOD: Catch specific exceptions
try:
risky_operation()
except ValueError as e:
logger.error(f"Invalid value: {e}")
except ConnectionError as e:
logger.error(f"Connection failed: {e}")
raise # Re-raise after logging
Exception Variable Scope
# Python 3: Exception variable is deleted after except block
try:
1 / 0
except ZeroDivisionError as e:
error = e # Save if needed
print(e)
# print(e) # NameError! e is deleted
print(error) # OK
10. Dictionary Key Ordering
Modern Python (3.7+)
# Since Python 3.7, dicts maintain insertion order
d = {"b": 2, "a": 1, "c": 3}
print(list(d.keys())) # ['b', 'a', 'c'] - insertion order
# But comparison ignores order
d1 = {"a": 1, "b": 2}
d2 = {"b": 2, "a": 1}
print(d1 == d2) # True
Gotcha: Changing Dict During Iteration
# BAD: RuntimeError
d = {"a": 1, "b": 2, "c": 3}
for key in d:
if d[key] == 2:
del d[key] # RuntimeError: dictionary changed size during iteration
# GOOD: Iterate over copy of keys
d = {"a": 1, "b": 2, "c": 3}
for key in list(d.keys()):
if d[key] == 2:
del d[key]
print(d) # {'a': 1, 'c': 3}
# GOOD: Dict comprehension
d = {"a": 1, "b": 2, "c": 3}
d = {k: v for k, v in d.items() if v != 2}
11. Import Gotchas
Circular Imports
# module_a.py
from module_b import func_b # Fails if module_b imports from module_a
def func_a():
return func_b()
# SOLUTION: Import inside function
def func_a():
from module_b import func_b
return func_b()
# OR: Import module, not function
import module_b
def func_a():
return module_b.func_b()
Module Name Shadowing
# BAD: File named random.py shadows stdlib
# random.py (your file)
import random # Imports YOUR file, not stdlib!
random.randint(1, 10) # AttributeError
# Python 3.13 now warns about this!
12. Class Attribute vs Instance Attribute
class MyClass:
shared_list = [] # Class attribute - shared by all instances!
def add_item(self, item):
self.shared_list.append(item)
a = MyClass()
b = MyClass()
a.add_item("hello")
print(b.shared_list) # ['hello'] - Oops!
# GOOD: Initialize in __init__
class MyClass:
def __init__(self):
self.items = [] # Instance attribute - unique to each instance
def add_item(self, item):
self.items.append(item)
Quick Reference
| Gotcha | Problem | Solution |
|---|---|---|
| Mutable defaults | def f(x=[]) |
Use None, create in function |
| Mutating while iterating | Skips items | Iterate over copy or use comprehension |
is vs == |
Identity vs equality | Use is only for None, True, False |
| Late binding | Captures variable, not value | Use default argument to capture |
| Falsy values | Empty != None | Be explicit in checks |
| Float precision | 0.1 + 0.2 != 0.3 | Use math.isclose() or Decimal |
| Bare except | Catches too much | Catch specific exceptions |
| Dict iteration | Can't modify during | Iterate over list(d.keys()) |
| Circular imports | Import errors | Import inside function or import module |
| Class attributes | Shared unexpectedly | Initialize in __init__ |