| name | datamol |
| description | Pythonic wrapper around RDKit with simplified interface and sensible defaults. Preferred for standard drug discovery: SMILES parsing, standardization, descriptors, fingerprints, clustering, 3D conformers, parallel processing. Returns native rdkit.Chem.Mol objects. For advanced control or custom parameters, use rdkit directly. |
Datamol Cheminformatics Skill
Overview
Datamol is a Python library that provides a lightweight, Pythonic abstraction layer over RDKit for molecular cheminformatics. Simplify complex molecular operations with sensible defaults, efficient parallelization, and modern I/O capabilities. All molecular objects are native rdkit.Chem.Mol instances, ensuring full compatibility with the RDKit ecosystem.
Key capabilities:
- Molecular format conversion (SMILES, SELFIES, InChI)
- Structure standardization and sanitization
- Molecular descriptors and fingerprints
- 3D conformer generation and analysis
- Clustering and diversity selection
- Scaffold and fragment analysis
- Chemical reaction application
- Visualization and alignment
- Batch processing with parallelization
- Cloud storage support via fsspec
Installation and Setup
Guide users to install datamol:
# Via conda/mamba (recommended)
conda install -c conda-forge datamol
# Via pip
pip install datamol
Import convention:
import datamol as dm
Core Workflows
1. Basic Molecule Handling
Creating molecules from SMILES:
import datamol as dm
# Single molecule
mol = dm.to_mol("CCO") # Ethanol
# From list of SMILES
smiles_list = ["CCO", "c1ccccc1", "CC(=O)O"]
mols = [dm.to_mol(smi) for smi in smiles_list]
# Error handling
mol = dm.to_mol("invalid_smiles") # Returns None
if mol is None:
print("Failed to parse SMILES")
Converting molecules to SMILES:
# Canonical SMILES
smiles = dm.to_smiles(mol)
# Isomeric SMILES (includes stereochemistry)
smiles = dm.to_smiles(mol, isomeric=True)
# Other formats
inchi = dm.to_inchi(mol)
inchikey = dm.to_inchikey(mol)
selfies = dm.to_selfies(mol)
Standardization and sanitization (always recommend for user-provided molecules):
# Sanitize molecule
mol = dm.sanitize_mol(mol)
# Full standardization (recommended for datasets)
mol = dm.standardize_mol(
mol,
disconnect_metals=True,
normalize=True,
reionize=True
)
# For SMILES strings directly
clean_smiles = dm.standardize_smiles(smiles)
2. Reading and Writing Molecular Files
Refer to references/io_module.md for comprehensive I/O documentation.
Reading files:
# SDF files (most common in chemistry)
df = dm.read_sdf("compounds.sdf", mol_column='mol')
# SMILES files
df = dm.read_smi("molecules.smi", smiles_column='smiles', mol_column='mol')
# CSV with SMILES column
df = dm.read_csv("data.csv", smiles_column="SMILES", mol_column="mol")
# Excel files
df = dm.read_excel("compounds.xlsx", sheet_name=0, mol_column="mol")
# Universal reader (auto-detects format)
df = dm.open_df("file.sdf") # Works with .sdf, .csv, .xlsx, .parquet, .json
Writing files:
# Save as SDF
dm.to_sdf(mols, "output.sdf")
# Or from DataFrame
dm.to_sdf(df, "output.sdf", mol_column="mol")
# Save as SMILES file
dm.to_smi(mols, "output.smi")
# Excel with rendered molecule images
dm.to_xlsx(df, "output.xlsx", mol_columns=["mol"])
Remote file support (S3, GCS, HTTP):
# Read from cloud storage
df = dm.read_sdf("s3://bucket/compounds.sdf")
df = dm.read_csv("https://example.com/data.csv")
# Write to cloud storage
dm.to_sdf(mols, "s3://bucket/output.sdf")
3. Molecular Descriptors and Properties
Refer to references/descriptors_viz.md for detailed descriptor documentation.
Computing descriptors for a single molecule:
# Get standard descriptor set
descriptors = dm.descriptors.compute_many_descriptors(mol)
# Returns: {'mw': 46.07, 'logp': -0.03, 'hbd': 1, 'hba': 1,
# 'tpsa': 20.23, 'n_aromatic_atoms': 0, ...}
Batch descriptor computation (recommended for datasets):
# Compute for all molecules in parallel
desc_df = dm.descriptors.batch_compute_many_descriptors(
mols,
n_jobs=-1, # Use all CPU cores
progress=True # Show progress bar
)
Specific descriptors:
# Aromaticity
n_aromatic = dm.descriptors.n_aromatic_atoms(mol)
aromatic_ratio = dm.descriptors.n_aromatic_atoms_proportion(mol)
# Stereochemistry
n_stereo = dm.descriptors.n_stereo_centers(mol)
n_unspec = dm.descriptors.n_stereo_centers_unspecified(mol)
# Flexibility
n_rigid = dm.descriptors.n_rigid_bonds(mol)
Drug-likeness filtering (Lipinski's Rule of Five):
# Filter compounds
def is_druglike(mol):
desc = dm.descriptors.compute_many_descriptors(mol)
return (
desc['mw'] <= 500 and
desc['logp'] <= 5 and
desc['hbd'] <= 5 and
desc['hba'] <= 10
)
druglike_mols = [mol for mol in mols if is_druglike(mol)]
4. Molecular Fingerprints and Similarity
Generating fingerprints:
# ECFP (Extended Connectivity Fingerprint, default)
fp = dm.to_fp(mol, fp_type='ecfp', radius=2, n_bits=2048)
# Other fingerprint types
fp_maccs = dm.to_fp(mol, fp_type='maccs')
fp_topological = dm.to_fp(mol, fp_type='topological')
fp_atompair = dm.to_fp(mol, fp_type='atompair')
Similarity calculations:
# Pairwise distances within a set
distance_matrix = dm.pdist(mols, n_jobs=-1)
# Distances between two sets
distances = dm.cdist(query_mols, library_mols, n_jobs=-1)
# Find most similar molecules
from scipy.spatial.distance import squareform
dist_matrix = squareform(dm.pdist(mols))
# Lower distance = higher similarity (Tanimoto distance = 1 - Tanimoto similarity)
5. Clustering and Diversity Selection
Refer to references/core_api.md for clustering details.
Butina clustering:
# Cluster molecules by structural similarity
clusters = dm.cluster_mols(
mols,
cutoff=0.2, # Tanimoto distance threshold (0=identical, 1=completely different)
n_jobs=-1 # Parallel processing
)
# Each cluster is a list of molecule indices
for i, cluster in enumerate(clusters):
print(f"Cluster {i}: {len(cluster)} molecules")
cluster_mols = [mols[idx] for idx in cluster]
Important: Butina clustering builds a full distance matrix - suitable for ~1000 molecules, not for 10,000+.
Diversity selection:
# Pick diverse subset
diverse_mols = dm.pick_diverse(
mols,
npick=100 # Select 100 diverse molecules
)
# Pick cluster centroids
centroids = dm.pick_centroids(
mols,
npick=50 # Select 50 representative molecules
)
6. Scaffold Analysis
Refer to references/fragments_scaffolds.md for complete scaffold documentation.
Extracting Murcko scaffolds:
# Get Bemis-Murcko scaffold (core structure)
scaffold = dm.to_scaffold_murcko(mol)
scaffold_smiles = dm.to_smiles(scaffold)
Scaffold-based analysis:
# Group compounds by scaffold
from collections import Counter
scaffolds = [dm.to_scaffold_murcko(mol) for mol in mols]
scaffold_smiles = [dm.to_smiles(s) for s in scaffolds]
# Count scaffold frequency
scaffold_counts = Counter(scaffold_smiles)
most_common = scaffold_counts.most_common(10)
# Create scaffold-to-molecules mapping
scaffold_groups = {}
for mol, scaf_smi in zip(mols, scaffold_smiles):
if scaf_smi not in scaffold_groups:
scaffold_groups[scaf_smi] = []
scaffold_groups[scaf_smi].append(mol)
Scaffold-based train/test splitting (for ML):
# Ensure train and test sets have different scaffolds
scaffold_to_mols = {}
for mol, scaf in zip(mols, scaffold_smiles):
if scaf not in scaffold_to_mols:
scaffold_to_mols[scaf] = []
scaffold_to_mols[scaf].append(mol)
# Split scaffolds into train/test
import random
scaffolds = list(scaffold_to_mols.keys())
random.shuffle(scaffolds)
split_idx = int(0.8 * len(scaffolds))
train_scaffolds = scaffolds[:split_idx]
test_scaffolds = scaffolds[split_idx:]
# Get molecules for each split
train_mols = [mol for scaf in train_scaffolds for mol in scaffold_to_mols[scaf]]
test_mols = [mol for scaf in test_scaffolds for mol in scaffold_to_mols[scaf]]
7. Molecular Fragmentation
Refer to references/fragments_scaffolds.md for fragmentation details.
BRICS fragmentation (16 bond types):
# Fragment molecule
fragments = dm.fragment.brics(mol)
# Returns: set of fragment SMILES with attachment points like '[1*]CCN'
RECAP fragmentation (11 bond types):
fragments = dm.fragment.recap(mol)
Fragment analysis:
# Find common fragments across compound library
from collections import Counter
all_fragments = []
for mol in mols:
frags = dm.fragment.brics(mol)
all_fragments.extend(frags)
fragment_counts = Counter(all_fragments)
common_frags = fragment_counts.most_common(20)
# Fragment-based scoring
def fragment_score(mol, reference_fragments):
mol_frags = dm.fragment.brics(mol)
overlap = mol_frags.intersection(reference_fragments)
return len(overlap) / len(mol_frags) if mol_frags else 0
8. 3D Conformer Generation
Refer to references/conformers_module.md for detailed conformer documentation.
Generating conformers:
# Generate 3D conformers
mol_3d = dm.conformers.generate(
mol,
n_confs=50, # Number to generate (auto if None)
rms_cutoff=0.5, # Filter similar conformers (Ångströms)
minimize_energy=True, # Minimize with UFF force field
method='ETKDGv3' # Embedding method (recommended)
)
# Access conformers
n_conformers = mol_3d.GetNumConformers()
conf = mol_3d.GetConformer(0) # Get first conformer
positions = conf.GetPositions() # Nx3 array of atom coordinates
Conformer clustering:
# Cluster conformers by RMSD
clusters = dm.conformers.cluster(
mol_3d,
rms_cutoff=1.0,
centroids=False
)
# Get representative conformers
centroids = dm.conformers.return_centroids(mol_3d, clusters)
SASA calculation:
# Calculate solvent accessible surface area
sasa_values = dm.conformers.sasa(mol_3d, n_jobs=-1)
# Access SASA from conformer properties
conf = mol_3d.GetConformer(0)
sasa = conf.GetDoubleProp('rdkit_free_sasa')
9. Visualization
Refer to references/descriptors_viz.md for visualization documentation.
Basic molecule grid:
# Visualize molecules
dm.viz.to_image(
mols[:20],
legends=[dm.to_smiles(m) for m in mols[:20]],
n_cols=5,
mol_size=(300, 300)
)
# Save to file
dm.viz.to_image(mols, outfile="molecules.png")
# SVG for publications
dm.viz.to_image(mols, outfile="molecules.svg", use_svg=True)
Aligned visualization (for SAR analysis):
# Align molecules by common substructure
dm.viz.to_image(
similar_mols,
align=True, # Enable MCS alignment
legends=activity_labels,
n_cols=4
)
Highlighting substructures:
# Highlight specific atoms and bonds
dm.viz.to_image(
mol,
highlight_atom=[0, 1, 2, 3], # Atom indices
highlight_bond=[0, 1, 2] # Bond indices
)
Conformer visualization:
# Display multiple conformers
dm.viz.conformers(
mol_3d,
n_confs=10,
align_conf=True,
n_cols=3
)
10. Chemical Reactions
Refer to references/reactions_data.md for reactions documentation.
Applying reactions:
from rdkit.Chem import rdChemReactions
# Define reaction from SMARTS
rxn_smarts = '[C:1](=[O:2])[OH:3]>>[C:1](=[O:2])[Cl:3]'
rxn = rdChemReactions.ReactionFromSmarts(rxn_smarts)
# Apply to molecule
reactant = dm.to_mol("CC(=O)O") # Acetic acid
product = dm.reactions.apply_reaction(
rxn,
(reactant,),
sanitize=True
)
# Convert to SMILES
product_smiles = dm.to_smiles(product)
Batch reaction application:
# Apply reaction to library
products = []
for mol in reactant_mols:
try:
prod = dm.reactions.apply_reaction(rxn, (mol,))
if prod is not None:
products.append(prod)
except Exception as e:
print(f"Reaction failed: {e}")
Parallelization
Datamol includes built-in parallelization for many operations. Use n_jobs parameter:
n_jobs=1: Sequential (no parallelization)n_jobs=-1: Use all available CPU coresn_jobs=4: Use 4 cores
Functions supporting parallelization:
dm.read_sdf(..., n_jobs=-1)dm.descriptors.batch_compute_many_descriptors(..., n_jobs=-1)dm.cluster_mols(..., n_jobs=-1)dm.pdist(..., n_jobs=-1)dm.conformers.sasa(..., n_jobs=-1)
Progress bars: Many batch operations support progress=True parameter.
Common Workflows and Patterns
Complete Pipeline: Data Loading → Filtering → Analysis
import datamol as dm
import pandas as pd
# 1. Load molecules
df = dm.read_sdf("compounds.sdf")
# 2. Standardize
df['mol'] = df['mol'].apply(lambda m: dm.standardize_mol(m) if m else None)
df = df[df['mol'].notna()] # Remove failed molecules
# 3. Compute descriptors
desc_df = dm.descriptors.batch_compute_many_descriptors(
df['mol'].tolist(),
n_jobs=-1,
progress=True
)
# 4. Filter by drug-likeness
druglike = (
(desc_df['mw'] <= 500) &
(desc_df['logp'] <= 5) &
(desc_df['hbd'] <= 5) &
(desc_df['hba'] <= 10)
)
filtered_df = df[druglike]
# 5. Cluster and select diverse subset
diverse_mols = dm.pick_diverse(
filtered_df['mol'].tolist(),
npick=100
)
# 6. Visualize results
dm.viz.to_image(
diverse_mols,
legends=[dm.to_smiles(m) for m in diverse_mols],
outfile="diverse_compounds.png",
n_cols=10
)
Structure-Activity Relationship (SAR) Analysis
# Group by scaffold
scaffolds = [dm.to_scaffold_murcko(mol) for mol in mols]
scaffold_smiles = [dm.to_smiles(s) for s in scaffolds]
# Create DataFrame with activities
sar_df = pd.DataFrame({
'mol': mols,
'scaffold': scaffold_smiles,
'activity': activities # User-provided activity data
})
# Analyze each scaffold series
for scaffold, group in sar_df.groupby('scaffold'):
if len(group) >= 3: # Need multiple examples
print(f"\nScaffold: {scaffold}")
print(f"Count: {len(group)}")
print(f"Activity range: {group['activity'].min():.2f} - {group['activity'].max():.2f}")
# Visualize with activities as legends
dm.viz.to_image(
group['mol'].tolist(),
legends=[f"Activity: {act:.2f}" for act in group['activity']],
align=True # Align by common substructure
)
Virtual Screening Pipeline
# 1. Generate fingerprints for query and library
query_fps = [dm.to_fp(mol) for mol in query_actives]
library_fps = [dm.to_fp(mol) for mol in library_mols]
# 2. Calculate similarities
from scipy.spatial.distance import cdist
import numpy as np
distances = dm.cdist(query_actives, library_mols, n_jobs=-1)
# 3. Find closest matches (min distance to any query)
min_distances = distances.min(axis=0)
similarities = 1 - min_distances # Convert distance to similarity
# 4. Rank and select top hits
top_indices = np.argsort(similarities)[::-1][:100] # Top 100
top_hits = [library_mols[i] for i in top_indices]
top_scores = [similarities[i] for i in top_indices]
# 5. Visualize hits
dm.viz.to_image(
top_hits[:20],
legends=[f"Sim: {score:.3f}" for score in top_scores[:20]],
outfile="screening_hits.png"
)
Reference Documentation
For detailed API documentation, consult these reference files:
references/core_api.md: Core namespace functions (conversions, standardization, fingerprints, clustering)references/io_module.md: File I/O operations (read/write SDF, CSV, Excel, remote files)references/conformers_module.md: 3D conformer generation, clustering, SASA calculationsreferences/descriptors_viz.md: Molecular descriptors and visualization functionsreferences/fragments_scaffolds.md: Scaffold extraction, BRICS/RECAP fragmentationreferences/reactions_data.md: Chemical reactions and toy datasets
Best Practices
Always standardize molecules from external sources:
mol = dm.standardize_mol(mol, disconnect_metals=True, normalize=True, reionize=True)Check for None values after molecule parsing:
mol = dm.to_mol(smiles) if mol is None: # Handle invalid SMILESUse parallel processing for large datasets:
result = dm.operation(..., n_jobs=-1, progress=True)Leverage fsspec for cloud storage:
df = dm.read_sdf("s3://bucket/compounds.sdf")Use appropriate fingerprints for similarity:
- ECFP (Morgan): General purpose, structural similarity
- MACCS: Fast, smaller feature space
- Atom pairs: Considers atom pairs and distances
Consider scale limitations:
- Butina clustering: ~1,000 molecules (full distance matrix)
- For larger datasets: Use diversity selection or hierarchical methods
Scaffold splitting for ML: Ensure proper train/test separation by scaffold
Align molecules when visualizing SAR series
Error Handling
# Safe molecule creation
def safe_to_mol(smiles):
try:
mol = dm.to_mol(smiles)
if mol is not None:
mol = dm.standardize_mol(mol)
return mol
except Exception as e:
print(f"Failed to process {smiles}: {e}")
return None
# Safe batch processing
valid_mols = []
for smiles in smiles_list:
mol = safe_to_mol(smiles)
if mol is not None:
valid_mols.append(mol)
Integration with Machine Learning
# Feature generation
X = np.array([dm.to_fp(mol) for mol in mols])
# Or descriptors
desc_df = dm.descriptors.batch_compute_many_descriptors(mols, n_jobs=-1)
X = desc_df.values
# Train model
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
model.fit(X, y_target)
# Predict
predictions = model.predict(X_test)
Troubleshooting
Issue: Molecule parsing fails
- Solution: Use
dm.standardize_smiles()first or trydm.fix_mol()
Issue: Memory errors with clustering
- Solution: Use
dm.pick_diverse()instead of full clustering for large sets
Issue: Slow conformer generation
- Solution: Reduce
n_confsor increaserms_cutoffto generate fewer conformers
Issue: Remote file access fails
- Solution: Ensure fsspec and appropriate cloud provider libraries are installed (s3fs, gcsfs, etc.)
Additional Resources
- Datamol Documentation: https://docs.datamol.io/
- RDKit Documentation: https://www.rdkit.org/docs/
- GitHub Repository: https://github.com/datamol-io/datamol