Claude Code Plugins

Community-maintained marketplace

Feedback

Statistical visualization. Scatter, box, violin, heatmaps, pair plots, regression, correlation matrices, KDE, faceted plots, for exploratory analysis and publication figures.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name seaborn
description Statistical visualization. Scatter, box, violin, heatmaps, pair plots, regression, correlation matrices, KDE, faceted plots, for exploratory analysis and publication figures.

Seaborn Statistical Visualization

Overview

Seaborn is a Python visualization library for creating publication-quality statistical graphics. Use this skill for dataset-oriented plotting, multivariate analysis, automatic statistical estimation, and complex multi-panel figures with minimal code.

Design Philosophy

Seaborn follows these core principles:

  1. Dataset-oriented: Work directly with DataFrames and named variables rather than abstract coordinates
  2. Semantic mapping: Automatically translate data values into visual properties (colors, sizes, styles)
  3. Statistical awareness: Built-in aggregation, error estimation, and confidence intervals
  4. Aesthetic defaults: Publication-ready themes and color palettes out of the box
  5. Matplotlib integration: Full compatibility with matplotlib customization when needed

Quick Start

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# Load example dataset
df = sns.load_dataset('tips')

# Create a simple visualization
sns.scatterplot(data=df, x='total_bill', y='tip', hue='day')
plt.show()

Core Plotting Interfaces

Function Interface (Traditional)

The function interface provides specialized plotting functions organized by visualization type. Each category has axes-level functions (plot to single axes) and figure-level functions (manage entire figure with faceting).

When to use:

  • Quick exploratory analysis
  • Single-purpose visualizations
  • When you need a specific plot type

Objects Interface (Modern)

The seaborn.objects interface provides a declarative, composable API similar to ggplot2. Build visualizations by chaining methods to specify data mappings, marks, transformations, and scales.

When to use:

  • Complex layered visualizations
  • When you need fine-grained control over transformations
  • Building custom plot types
  • Programmatic plot generation
from seaborn import objects as so

# Declarative syntax
(
    so.Plot(data=df, x='total_bill', y='tip')
    .add(so.Dot(), color='day')
    .add(so.Line(), so.PolyFit())
)

Plotting Functions by Category

Relational Plots (Relationships Between Variables)

Use for: Exploring how two or more variables relate to each other

  • scatterplot() - Display individual observations as points
  • lineplot() - Show trends and changes (automatically aggregates and computes CI)
  • relplot() - Figure-level interface with automatic faceting

Key parameters:

  • x, y - Primary variables
  • hue - Color encoding for additional categorical/continuous variable
  • size - Point/line size encoding
  • style - Marker/line style encoding
  • col, row - Facet into multiple subplots (figure-level only)
# Scatter with multiple semantic mappings
sns.scatterplot(data=df, x='total_bill', y='tip',
                hue='time', size='size', style='sex')

# Line plot with confidence intervals
sns.lineplot(data=timeseries, x='date', y='value', hue='category')

# Faceted relational plot
sns.relplot(data=df, x='total_bill', y='tip',
            col='time', row='sex', hue='smoker', kind='scatter')

Distribution Plots (Single and Bivariate Distributions)

Use for: Understanding data spread, shape, and probability density

  • histplot() - Bar-based frequency distributions with flexible binning
  • kdeplot() - Smooth density estimates using Gaussian kernels
  • ecdfplot() - Empirical cumulative distribution (no parameters to tune)
  • rugplot() - Individual observation tick marks
  • displot() - Figure-level interface for univariate and bivariate distributions
  • jointplot() - Bivariate plot with marginal distributions
  • pairplot() - Matrix of pairwise relationships across dataset

Key parameters:

  • x, y - Variables (y optional for univariate)
  • hue - Separate distributions by category
  • stat - Normalization: "count", "frequency", "probability", "density"
  • bins / binwidth - Histogram binning control
  • bw_adjust - KDE bandwidth multiplier (higher = smoother)
  • fill - Fill area under curve
  • multiple - How to handle hue: "layer", "stack", "dodge", "fill"
# Histogram with density normalization
sns.histplot(data=df, x='total_bill', hue='time',
             stat='density', multiple='stack')

# Bivariate KDE with contours
sns.kdeplot(data=df, x='total_bill', y='tip',
            fill=True, levels=5, thresh=0.1)

# Joint plot with marginals
sns.jointplot(data=df, x='total_bill', y='tip',
              kind='scatter', hue='time')

# Pairwise relationships
sns.pairplot(data=df, hue='species', corner=True)

Categorical Plots (Comparisons Across Categories)

Use for: Comparing distributions or statistics across discrete categories

Categorical scatterplots:

  • stripplot() - Points with jitter to show all observations
  • swarmplot() - Non-overlapping points (beeswarm algorithm)

Distribution comparisons:

  • boxplot() - Quartiles and outliers
  • violinplot() - KDE + quartile information
  • boxenplot() - Enhanced boxplot for larger datasets

Statistical estimates:

  • barplot() - Mean/aggregate with confidence intervals
  • pointplot() - Point estimates with connecting lines
  • countplot() - Count of observations per category

Figure-level:

  • catplot() - Faceted categorical plots (set kind parameter)

Key parameters:

  • x, y - Variables (one typically categorical)
  • hue - Additional categorical grouping
  • order, hue_order - Control category ordering
  • dodge - Separate hue levels side-by-side
  • orient - "v" (vertical) or "h" (horizontal)
  • kind - Plot type for catplot: "strip", "swarm", "box", "violin", "bar", "point"
# Swarm plot showing all points
sns.swarmplot(data=df, x='day', y='total_bill', hue='sex')

# Violin plot with split for comparison
sns.violinplot(data=df, x='day', y='total_bill',
               hue='sex', split=True)

# Bar plot with error bars
sns.barplot(data=df, x='day', y='total_bill',
            hue='sex', estimator='mean', errorbar='ci')

# Faceted categorical plot
sns.catplot(data=df, x='day', y='total_bill',
            col='time', kind='box')

Regression Plots (Linear Relationships)

Use for: Visualizing linear regressions and residuals

  • regplot() - Axes-level regression plot with scatter + fit line
  • lmplot() - Figure-level with faceting support
  • residplot() - Residual plot for assessing model fit

Key parameters:

  • x, y - Variables to regress
  • order - Polynomial regression order
  • logistic - Fit logistic regression
  • robust - Use robust regression (less sensitive to outliers)
  • ci - Confidence interval width (default 95)
  • scatter_kws, line_kws - Customize scatter and line properties
# Simple linear regression
sns.regplot(data=df, x='total_bill', y='tip')

# Polynomial regression with faceting
sns.lmplot(data=df, x='total_bill', y='tip',
           col='time', order=2, ci=95)

# Check residuals
sns.residplot(data=df, x='total_bill', y='tip')

Matrix Plots (Rectangular Data)

Use for: Visualizing matrices, correlations, and grid-structured data

  • heatmap() - Color-encoded matrix with annotations
  • clustermap() - Hierarchically-clustered heatmap

Key parameters:

  • data - 2D rectangular dataset (DataFrame or array)
  • annot - Display values in cells
  • fmt - Format string for annotations (e.g., ".2f")
  • cmap - Colormap name
  • center - Value at colormap center (for diverging colormaps)
  • vmin, vmax - Color scale limits
  • square - Force square cells
  • linewidths - Gap between cells
# Correlation heatmap
corr = df.corr()
sns.heatmap(corr, annot=True, fmt='.2f',
            cmap='coolwarm', center=0, square=True)

# Clustered heatmap
sns.clustermap(data, cmap='viridis',
               standard_scale=1, figsize=(10, 10))

Multi-Plot Grids

Seaborn provides grid objects for creating complex multi-panel figures:

FacetGrid

Create subplots based on categorical variables. Most useful when called through figure-level functions (relplot, displot, catplot), but can be used directly for custom plots.

g = sns.FacetGrid(df, col='time', row='sex', hue='smoker')
g.map(sns.scatterplot, 'total_bill', 'tip')
g.add_legend()

PairGrid

Show pairwise relationships between all variables in a dataset.

g = sns.PairGrid(df, hue='species')
g.map_upper(sns.scatterplot)
g.map_lower(sns.kdeplot)
g.map_diag(sns.histplot)
g.add_legend()

JointGrid

Combine bivariate plot with marginal distributions.

g = sns.JointGrid(data=df, x='total_bill', y='tip')
g.plot_joint(sns.scatterplot)
g.plot_marginals(sns.histplot)

Figure-Level vs Axes-Level Functions

Understanding this distinction is crucial for effective seaborn usage:

Axes-Level Functions

  • Plot to a single matplotlib Axes object
  • Integrate easily into complex matplotlib figures
  • Accept ax= parameter for precise placement
  • Return Axes object
  • Examples: scatterplot, histplot, boxplot, regplot, heatmap

When to use:

  • Building custom multi-plot layouts
  • Combining different plot types
  • Need matplotlib-level control
  • Integrating with existing matplotlib code
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
sns.scatterplot(data=df, x='x', y='y', ax=axes[0, 0])
sns.histplot(data=df, x='x', ax=axes[0, 1])
sns.boxplot(data=df, x='cat', y='y', ax=axes[1, 0])
sns.kdeplot(data=df, x='x', y='y', ax=axes[1, 1])

Figure-Level Functions

  • Manage entire figure including all subplots
  • Built-in faceting via col and row parameters
  • Return FacetGrid, JointGrid, or PairGrid objects
  • Use height and aspect for sizing (per subplot)
  • Cannot be placed in existing figure
  • Examples: relplot, displot, catplot, lmplot, jointplot, pairplot

When to use:

  • Faceted visualizations (small multiples)
  • Quick exploratory analysis
  • Consistent multi-panel layouts
  • Don't need to combine with other plot types
# Automatic faceting
sns.relplot(data=df, x='x', y='y', col='category', row='group',
            hue='type', height=3, aspect=1.2)

Data Structure Requirements

Long-Form Data (Preferred)

Each variable is a column, each observation is a row. This "tidy" format provides maximum flexibility:

# Long-form structure
   subject  condition  measurement
0        1    control         10.5
1        1  treatment         12.3
2        2    control          9.8
3        2  treatment         13.1

Advantages:

  • Works with all seaborn functions
  • Easy to remap variables to visual properties
  • Supports arbitrary complexity
  • Natural for DataFrame operations

Wide-Form Data

Variables are spread across columns. Useful for simple rectangular data:

# Wide-form structure
   control  treatment
0     10.5       12.3
1      9.8       13.1

Use cases:

  • Simple time series
  • Correlation matrices
  • Heatmaps
  • Quick plots of array data

Converting wide to long:

df_long = df.melt(var_name='condition', value_name='measurement')

Color Palettes

Seaborn provides carefully designed color palettes for different data types:

Qualitative Palettes (Categorical Data)

Distinguish categories through hue variation:

  • "deep" - Default, vivid colors
  • "muted" - Softer, less saturated
  • "pastel" - Light, desaturated
  • "bright" - Highly saturated
  • "dark" - Dark values
  • "colorblind" - Safe for color vision deficiency
sns.set_palette("colorblind")
sns.color_palette("Set2")

Sequential Palettes (Ordered Data)

Show progression from low to high values:

  • "rocket", "mako" - Wide luminance range (good for heatmaps)
  • "flare", "crest" - Restricted luminance (good for points/lines)
  • "viridis", "magma", "plasma" - Matplotlib perceptually uniform
sns.heatmap(data, cmap='rocket')
sns.kdeplot(data=df, x='x', y='y', cmap='mako', fill=True)

Diverging Palettes (Centered Data)

Emphasize deviations from a midpoint:

  • "vlag" - Blue to red
  • "icefire" - Blue to orange
  • "coolwarm" - Cool to warm
  • "Spectral" - Rainbow diverging
sns.heatmap(correlation_matrix, cmap='vlag', center=0)

Custom Palettes

# Create custom palette
custom = sns.color_palette("husl", 8)

# Light to dark gradient
palette = sns.light_palette("seagreen", as_cmap=True)

# Diverging palette from hues
palette = sns.diverging_palette(250, 10, as_cmap=True)

Theming and Aesthetics

Set Theme

set_theme() controls overall appearance:

# Set complete theme
sns.set_theme(style='whitegrid', palette='pastel', font='sans-serif')

# Reset to defaults
sns.set_theme()

Styles

Control background and grid appearance:

  • "darkgrid" - Gray background with white grid (default)
  • "whitegrid" - White background with gray grid
  • "dark" - Gray background, no grid
  • "white" - White background, no grid
  • "ticks" - White background with axis ticks
sns.set_style("whitegrid")

# Remove spines
sns.despine(left=False, bottom=False, offset=10, trim=True)

# Temporary style
with sns.axes_style("white"):
    sns.scatterplot(data=df, x='x', y='y')

Contexts

Scale elements for different use cases:

  • "paper" - Smallest (default)
  • "notebook" - Slightly larger
  • "talk" - Presentation slides
  • "poster" - Large format
sns.set_context("talk", font_scale=1.2)

# Temporary context
with sns.plotting_context("poster"):
    sns.barplot(data=df, x='category', y='value')

Best Practices

1. Data Preparation

Always use well-structured DataFrames with meaningful column names:

# Good: Named columns in DataFrame
df = pd.DataFrame({'bill': bills, 'tip': tips, 'day': days})
sns.scatterplot(data=df, x='bill', y='tip', hue='day')

# Avoid: Unnamed arrays
sns.scatterplot(x=x_array, y=y_array)  # Loses axis labels

2. Choose the Right Plot Type

Continuous x, continuous y: scatterplot, lineplot, kdeplot, regplot Continuous x, categorical y: violinplot, boxplot, stripplot, swarmplot One continuous variable: histplot, kdeplot, ecdfplot Correlations/matrices: heatmap, clustermap Pairwise relationships: pairplot, jointplot

3. Use Figure-Level Functions for Faceting

# Instead of manual subplot creation
sns.relplot(data=df, x='x', y='y', col='category', col_wrap=3)

# Not: Creating subplots manually for simple faceting

4. Leverage Semantic Mappings

Use hue, size, and style to encode additional dimensions:

sns.scatterplot(data=df, x='x', y='y',
                hue='category',      # Color by category
                size='importance',    # Size by continuous variable
                style='type')         # Marker style by type

5. Control Statistical Estimation

Many functions compute statistics automatically. Understand and customize:

# Lineplot computes mean and 95% CI by default
sns.lineplot(data=df, x='time', y='value',
             errorbar='sd')  # Use standard deviation instead

# Barplot computes mean by default
sns.barplot(data=df, x='category', y='value',
            estimator='median',  # Use median instead
            errorbar=('ci', 95))  # Bootstrapped CI

6. Combine with Matplotlib

Seaborn integrates seamlessly with matplotlib for fine-tuning:

ax = sns.scatterplot(data=df, x='x', y='y')
ax.set(xlabel='Custom X Label', ylabel='Custom Y Label',
       title='Custom Title')
ax.axhline(y=0, color='r', linestyle='--')
plt.tight_layout()

7. Save High-Quality Figures

fig = sns.relplot(data=df, x='x', y='y', col='group')
fig.savefig('figure.png', dpi=300, bbox_inches='tight')
fig.savefig('figure.pdf')  # Vector format for publications

Common Patterns

Exploratory Data Analysis

# Quick overview of all relationships
sns.pairplot(data=df, hue='target', corner=True)

# Distribution exploration
sns.displot(data=df, x='variable', hue='group',
            kind='kde', fill=True, col='category')

# Correlation analysis
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', center=0)

Publication-Quality Figures

sns.set_theme(style='ticks', context='paper', font_scale=1.1)

g = sns.catplot(data=df, x='treatment', y='response',
                col='cell_line', kind='box', height=3, aspect=1.2)
g.set_axis_labels('Treatment Condition', 'Response (μM)')
g.set_titles('{col_name}')
sns.despine(trim=True)

g.savefig('figure.pdf', dpi=300, bbox_inches='tight')

Complex Multi-Panel Figures

# Using matplotlib subplots with seaborn
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

sns.scatterplot(data=df, x='x1', y='y', hue='group', ax=axes[0, 0])
sns.histplot(data=df, x='x1', hue='group', ax=axes[0, 1])
sns.violinplot(data=df, x='group', y='y', ax=axes[1, 0])
sns.heatmap(df.pivot_table(values='y', index='x1', columns='x2'),
            ax=axes[1, 1], cmap='viridis')

plt.tight_layout()

Time Series with Confidence Bands

# Lineplot automatically aggregates and shows CI
sns.lineplot(data=timeseries, x='date', y='measurement',
             hue='sensor', style='location', errorbar='sd')

# For more control
g = sns.relplot(data=timeseries, x='date', y='measurement',
                col='location', hue='sensor', kind='line',
                height=4, aspect=1.5, errorbar=('ci', 95))
g.set_axis_labels('Date', 'Measurement (units)')

Troubleshooting

Issue: Legend Outside Plot Area

Figure-level functions place legends outside by default. To move inside:

g = sns.relplot(data=df, x='x', y='y', hue='category')
g._legend.set_bbox_to_anchor((0.9, 0.5))  # Adjust position

Issue: Overlapping Labels

plt.xticks(rotation=45, ha='right')
plt.tight_layout()

Issue: Figure Too Small

For figure-level functions:

sns.relplot(data=df, x='x', y='y', height=6, aspect=1.5)

For axes-level functions:

fig, ax = plt.subplots(figsize=(10, 6))
sns.scatterplot(data=df, x='x', y='y', ax=ax)

Issue: Colors Not Distinct Enough

# Use a different palette
sns.set_palette("bright")

# Or specify number of colors
palette = sns.color_palette("husl", n_colors=len(df['category'].unique()))
sns.scatterplot(data=df, x='x', y='y', hue='category', palette=palette)

Issue: KDE Too Smooth or Jagged

# Adjust bandwidth
sns.kdeplot(data=df, x='x', bw_adjust=0.5)  # Less smooth
sns.kdeplot(data=df, x='x', bw_adjust=2)    # More smooth

Resources

This skill includes reference materials for deeper exploration:

references/

  • function_reference.md - Comprehensive listing of all seaborn functions with parameters and examples
  • objects_interface.md - Detailed guide to the modern seaborn.objects API
  • examples.md - Common use cases and code patterns for different analysis scenarios

Load reference files as needed for detailed function signatures, advanced parameters, or specific examples.