| name | cirq |
| description | Quantum computing framework for building, simulating, optimizing, and executing quantum circuits. Use this skill when working with quantum algorithms, quantum circuit design, quantum simulation (noiseless or noisy), running on quantum hardware (Google, IonQ, AQT, Pasqal), circuit optimization and compilation, noise modeling and characterization, or quantum experiments and benchmarking (VQE, QAOA, QPE, randomized benchmarking). |
Cirq - Quantum Computing with Python
Cirq is Google Quantum AI's open-source framework for designing, simulating, and running quantum circuits on quantum computers and simulators.
Installation
uv pip install cirq
For hardware integration:
# Google Quantum Engine
uv pip install cirq-google
# IonQ
uv pip install cirq-ionq
# AQT (Alpine Quantum Technologies)
uv pip install cirq-aqt
# Pasqal
uv pip install cirq-pasqal
# Azure Quantum
uv pip install azure-quantum cirq
Quick Start
Basic Circuit
import cirq
import numpy as np
# Create qubits
q0, q1 = cirq.LineQubit.range(2)
# Build circuit
circuit = cirq.Circuit(
cirq.H(q0), # Hadamard on q0
cirq.CNOT(q0, q1), # CNOT with q0 control, q1 target
cirq.measure(q0, q1, key='result')
)
print(circuit)
# Simulate
simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=1000)
# Display results
print(result.histogram(key='result'))
Parameterized Circuit
import sympy
# Define symbolic parameter
theta = sympy.Symbol('theta')
# Create parameterized circuit
circuit = cirq.Circuit(
cirq.ry(theta)(q0),
cirq.measure(q0, key='m')
)
# Sweep over parameter values
sweep = cirq.Linspace('theta', start=0, stop=2*np.pi, length=20)
results = simulator.run_sweep(circuit, params=sweep, repetitions=1000)
# Process results
for params, result in zip(sweep, results):
theta_val = params['theta']
counts = result.histogram(key='m')
print(f"θ={theta_val:.2f}: {counts}")
Core Capabilities
Circuit Building
For comprehensive information about building quantum circuits, including qubits, gates, operations, custom gates, and circuit patterns, see:
- references/building.md - Complete guide to circuit construction
Common topics:
- Qubit types (GridQubit, LineQubit, NamedQubit)
- Single and two-qubit gates
- Parameterized gates and operations
- Custom gate decomposition
- Circuit organization with moments
- Standard circuit patterns (Bell states, GHZ, QFT)
- Import/export (OpenQASM, JSON)
- Working with qudits and observables
Simulation
For detailed information about simulating quantum circuits, including exact simulation, noisy simulation, parameter sweeps, and the Quantum Virtual Machine, see:
- references/simulation.md - Complete guide to quantum simulation
Common topics:
- Exact simulation (state vector, density matrix)
- Sampling and measurements
- Parameter sweeps (single and multiple parameters)
- Noisy simulation
- State histograms and visualization
- Quantum Virtual Machine (QVM)
- Expectation values and observables
- Performance optimization
Circuit Transformation
For information about optimizing, compiling, and manipulating quantum circuits, see:
- references/transformation.md - Complete guide to circuit transformations
Common topics:
- Transformer framework
- Gate decomposition
- Circuit optimization (merge gates, eject Z gates, drop negligible operations)
- Circuit compilation for hardware
- Qubit routing and SWAP insertion
- Custom transformers
- Transformation pipelines
Hardware Integration
For information about running circuits on real quantum hardware from various providers, see:
- references/hardware.md - Complete guide to hardware integration
Supported providers:
- Google Quantum AI (cirq-google) - Sycamore, Weber processors
- IonQ (cirq-ionq) - Trapped ion quantum computers
- Azure Quantum (azure-quantum) - IonQ and Honeywell backends
- AQT (cirq-aqt) - Alpine Quantum Technologies
- Pasqal (cirq-pasqal) - Neutral atom quantum computers
Topics include device representation, qubit selection, authentication, job management, and circuit optimization for hardware.
Noise Modeling
For information about modeling noise, noisy simulation, characterization, and error mitigation, see:
- references/noise.md - Complete guide to noise modeling
Common topics:
- Noise channels (depolarizing, amplitude damping, phase damping)
- Noise models (constant, gate-specific, qubit-specific, thermal)
- Adding noise to circuits
- Readout noise
- Noise characterization (randomized benchmarking, XEB)
- Noise visualization (heatmaps)
- Error mitigation techniques
Quantum Experiments
For information about designing experiments, parameter sweeps, data collection, and using the ReCirq framework, see:
- references/experiments.md - Complete guide to quantum experiments
Common topics:
- Experiment design patterns
- Parameter sweeps and data collection
- ReCirq framework structure
- Common algorithms (VQE, QAOA, QPE)
- Data analysis and visualization
- Statistical analysis and fidelity estimation
- Parallel data collection
Common Patterns
Variational Algorithm Template
import scipy.optimize
def variational_algorithm(ansatz, cost_function, initial_params):
"""Template for variational quantum algorithms."""
def objective(params):
circuit = ansatz(params)
simulator = cirq.Simulator()
result = simulator.simulate(circuit)
return cost_function(result)
# Optimize
result = scipy.optimize.minimize(
objective,
initial_params,
method='COBYLA'
)
return result
# Define ansatz
def my_ansatz(params):
q = cirq.LineQubit(0)
return cirq.Circuit(
cirq.ry(params[0])(q),
cirq.rz(params[1])(q)
)
# Define cost function
def my_cost(result):
state = result.final_state_vector
# Calculate cost based on state
return np.real(state[0])
# Run optimization
result = variational_algorithm(my_ansatz, my_cost, [0.0, 0.0])
Hardware Execution Template
def run_on_hardware(circuit, provider='google', device_name='weber', repetitions=1000):
"""Template for running on quantum hardware."""
if provider == 'google':
import cirq_google
engine = cirq_google.get_engine()
processor = engine.get_processor(device_name)
job = processor.run(circuit, repetitions=repetitions)
return job.results()[0]
elif provider == 'ionq':
import cirq_ionq
service = cirq_ionq.Service()
result = service.run(circuit, repetitions=repetitions, target='qpu')
return result
elif provider == 'azure':
from azure.quantum.cirq import AzureQuantumService
# Setup workspace...
service = AzureQuantumService(workspace)
result = service.run(circuit, repetitions=repetitions, target='ionq.qpu')
return result
else:
raise ValueError(f"Unknown provider: {provider}")
Noise Study Template
def noise_comparison_study(circuit, noise_levels):
"""Compare circuit performance at different noise levels."""
results = {}
for noise_level in noise_levels:
# Create noisy circuit
noisy_circuit = circuit.with_noise(cirq.depolarize(p=noise_level))
# Simulate
simulator = cirq.DensityMatrixSimulator()
result = simulator.run(noisy_circuit, repetitions=1000)
# Analyze
results[noise_level] = {
'histogram': result.histogram(key='result'),
'dominant_state': max(
result.histogram(key='result').items(),
key=lambda x: x[1]
)
}
return results
# Run study
noise_levels = [0.0, 0.001, 0.01, 0.05, 0.1]
results = noise_comparison_study(circuit, noise_levels)
Best Practices
Circuit Design
- Use appropriate qubit types for your topology
- Keep circuits modular and reusable
- Label measurements with descriptive keys
- Validate circuits against device constraints before execution
Simulation
- Use state vector simulation for pure states (more efficient)
- Use density matrix simulation only when needed (mixed states, noise)
- Leverage parameter sweeps instead of individual runs
- Monitor memory usage for large systems (2^n grows quickly)
Hardware Execution
- Always test on simulators first
- Select best qubits using calibration data
- Optimize circuits for target hardware gateset
- Implement error mitigation for production runs
- Store expensive hardware results immediately
Circuit Optimization
- Start with high-level built-in transformers
- Chain multiple optimizations in sequence
- Track depth and gate count reduction
- Validate correctness after transformation
Noise Modeling
- Use realistic noise models from calibration data
- Include all error sources (gate, decoherence, readout)
- Characterize before mitigating
- Keep circuits shallow to minimize noise accumulation
Experiments
- Structure experiments with clear separation (data generation, collection, analysis)
- Use ReCirq patterns for reproducibility
- Save intermediate results frequently
- Parallelize independent tasks
- Document thoroughly with metadata
Additional Resources
- Official Documentation: https://quantumai.google/cirq
- API Reference: https://quantumai.google/reference/python/cirq
- Tutorials: https://quantumai.google/cirq/tutorials
- Examples: https://github.com/quantumlib/Cirq/tree/master/examples
- ReCirq: https://github.com/quantumlib/ReCirq
Common Issues
Circuit too deep for hardware:
- Use circuit optimization transformers to reduce depth
- See
transformation.mdfor optimization techniques
Memory issues with simulation:
- Switch from density matrix to state vector simulator
- Reduce number of qubits or use stabilizer simulator for Clifford circuits
Device validation errors:
- Check qubit connectivity with device.metadata.nx_graph
- Decompose gates to device-native gateset
- See
hardware.mdfor device-specific compilation
Noisy simulation too slow:
- Density matrix simulation is O(2^2n) - consider reducing qubits
- Use noise models selectively on critical operations only
- See
simulation.mdfor performance optimization