Claude Code Plugins

Community-maintained marketplace

Feedback
2.1k
0

Neuropixels neural recording analysis. Load SpikeGLX/OpenEphys data, preprocess, motion correction, Kilosort4 spike sorting, quality metrics, Allen/IBL curation, AI-assisted visual analysis, for Neuropixels 1.0/2.0 extracellular electrophysiology. Use when working with neural recordings, spike sorting, extracellular electrophysiology, or when the user mentions Neuropixels, SpikeGLX, Open Ephys, Kilosort, quality metrics, or unit curation.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name neuropixels-analysis
description Neuropixels neural recording analysis. Load SpikeGLX/OpenEphys data, preprocess, motion correction, Kilosort4 spike sorting, quality metrics, Allen/IBL curation, AI-assisted visual analysis, for Neuropixels 1.0/2.0 extracellular electrophysiology. Use when working with neural recordings, spike sorting, extracellular electrophysiology, or when the user mentions Neuropixels, SpikeGLX, Open Ephys, Kilosort, quality metrics, or unit curation.

Neuropixels Data Analysis

Overview

Comprehensive toolkit for analyzing Neuropixels high-density neural recordings using current best practices from SpikeInterface, Allen Institute, and International Brain Laboratory (IBL). Supports the full workflow from raw data to publication-ready curated units.

When to Use This Skill

This skill should be used when:

  • Working with Neuropixels recordings (.ap.bin, .lf.bin, .meta files)
  • Loading data from SpikeGLX, Open Ephys, or NWB formats
  • Preprocessing neural recordings (filtering, CAR, bad channel detection)
  • Detecting and correcting motion/drift in recordings
  • Running spike sorting (Kilosort4, SpykingCircus2, Mountainsort5)
  • Computing quality metrics (SNR, ISI violations, presence ratio)
  • Curating units using Allen/IBL criteria
  • Creating visualizations of neural data
  • Exporting results to Phy or NWB

Supported Hardware & Formats

Probe Electrodes Channels Notes
Neuropixels 1.0 960 384 Requires phase_shift correction
Neuropixels 2.0 (single) 1280 384 Denser geometry
Neuropixels 2.0 (4-shank) 5120 384 Multi-region recording
Format Extension Reader
SpikeGLX .ap.bin, .lf.bin, .meta si.read_spikeglx()
Open Ephys .continuous, .oebin si.read_openephys()
NWB .nwb si.read_nwb()

Quick Start

Basic Import and Setup

import spikeinterface.full as si
import neuropixels_analysis as npa

# Configure parallel processing
job_kwargs = dict(n_jobs=-1, chunk_duration='1s', progress_bar=True)

Loading Data

# SpikeGLX (most common)
recording = si.read_spikeglx('/path/to/data', stream_id='imec0.ap')

# Open Ephys (common for many labs)
recording = si.read_openephys('/path/to/Record_Node_101/')

# Check available streams
streams, ids = si.get_neo_streams('spikeglx', '/path/to/data')
print(streams)  # ['imec0.ap', 'imec0.lf', 'nidq']

# For testing with subset of data
recording = recording.frame_slice(0, int(60 * recording.get_sampling_frequency()))

Complete Pipeline (One Command)

# Run full analysis pipeline
results = npa.run_pipeline(
    recording,
    output_dir='output/',
    sorter='kilosort4',
    curation_method='allen',
)

# Access results
sorting = results['sorting']
metrics = results['metrics']
labels = results['labels']

Standard Analysis Workflow

1. Preprocessing

# Recommended preprocessing chain
rec = si.highpass_filter(recording, freq_min=400)
rec = si.phase_shift(rec)  # Required for Neuropixels 1.0
bad_ids, _ = si.detect_bad_channels(rec)
rec = rec.remove_channels(bad_ids)
rec = si.common_reference(rec, operator='median')

# Or use our wrapper
rec = npa.preprocess(recording)

2. Check and Correct Drift

# Check for drift (always do this!)
motion_info = npa.estimate_motion(rec, preset='kilosort_like')
npa.plot_drift(rec, motion_info, output='drift_map.png')

# Apply correction if needed
if motion_info['motion'].max() > 10:  # microns
    rec = npa.correct_motion(rec, preset='nonrigid_accurate')

3. Spike Sorting

# Kilosort4 (recommended, requires GPU)
sorting = si.run_sorter('kilosort4', rec, folder='ks4_output')

# CPU alternatives
sorting = si.run_sorter('tridesclous2', rec, folder='tdc2_output')
sorting = si.run_sorter('spykingcircus2', rec, folder='sc2_output')
sorting = si.run_sorter('mountainsort5', rec, folder='ms5_output')

# Check available sorters
print(si.installed_sorters())

4. Postprocessing

# Create analyzer and compute all extensions
analyzer = si.create_sorting_analyzer(sorting, rec, sparse=True)

analyzer.compute('random_spikes', max_spikes_per_unit=500)
analyzer.compute('waveforms', ms_before=1.0, ms_after=2.0)
analyzer.compute('templates', operators=['average', 'std'])
analyzer.compute('spike_amplitudes')
analyzer.compute('correlograms', window_ms=50.0, bin_ms=1.0)
analyzer.compute('unit_locations', method='monopolar_triangulation')
analyzer.compute('quality_metrics')

metrics = analyzer.get_extension('quality_metrics').get_data()

5. Curation

# Allen Institute criteria (conservative)
good_units = metrics.query("""
    presence_ratio > 0.9 and
    isi_violations_ratio < 0.5 and
    amplitude_cutoff < 0.1
""").index.tolist()

# Or use automated curation
labels = npa.curate(metrics, method='allen')  # 'allen', 'ibl', 'strict'

6. AI-Assisted Curation (For Uncertain Units)

When using this skill with Claude Code, Claude can directly analyze waveform plots and provide expert curation decisions. For programmatic API access:

from anthropic import Anthropic

# Setup API client
client = Anthropic()

# Analyze uncertain units visually
uncertain = metrics.query('snr > 3 and snr < 8').index.tolist()

for unit_id in uncertain:
    result = npa.analyze_unit_visually(analyzer, unit_id, api_client=client)
    print(f"Unit {unit_id}: {result['classification']}")
    print(f"  Reasoning: {result['reasoning'][:100]}...")

Claude Code Integration: When running within Claude Code, ask Claude to examine waveform/correlogram plots directly - no API setup required.

7. Generate Analysis Report

# Generate comprehensive HTML report with visualizations
report_dir = npa.generate_analysis_report(results, 'output/')
# Opens report.html with summary stats, figures, and unit table

# Print formatted summary to console
npa.print_analysis_summary(results)

8. Export Results

# Export to Phy for manual review
si.export_to_phy(analyzer, output_folder='phy_export/',
                 compute_pc_features=True, compute_amplitudes=True)

# Export to NWB
from spikeinterface.exporters import export_to_nwb
export_to_nwb(rec, sorting, 'output.nwb')

# Save quality metrics
metrics.to_csv('quality_metrics.csv')

Common Pitfalls and Best Practices

  1. Always check drift before spike sorting - drift > 10μm significantly impacts quality
  2. Use phase_shift for Neuropixels 1.0 probes (not needed for 2.0)
  3. Save preprocessed data to avoid recomputing - use rec.save(folder='preprocessed/')
  4. Use GPU for Kilosort4 - it's 10-50x faster than CPU alternatives
  5. Review uncertain units manually - automated curation is a starting point
  6. Combine metrics with AI - use metrics for clear cases, AI for borderline units
  7. Document your thresholds - different analyses may need different criteria
  8. Export to Phy for critical experiments - human oversight is valuable

Key Parameters to Adjust

Preprocessing

  • freq_min: Highpass cutoff (300-400 Hz typical)
  • detect_threshold: Bad channel detection sensitivity

Motion Correction

  • preset: 'kilosort_like' (fast) or 'nonrigid_accurate' (better for severe drift)

Spike Sorting (Kilosort4)

  • batch_size: Samples per batch (30000 default)
  • nblocks: Number of drift blocks (increase for long recordings)
  • Th_learned: Detection threshold (lower = more spikes)

Quality Metrics

  • snr_threshold: Signal-to-noise cutoff (3-5 typical)
  • isi_violations_ratio: Refractory violations (0.01-0.5)
  • presence_ratio: Recording coverage (0.5-0.95)

Bundled Resources

scripts/preprocess_recording.py

Automated preprocessing script:

python scripts/preprocess_recording.py /path/to/data --output preprocessed/

scripts/run_sorting.py

Run spike sorting:

python scripts/run_sorting.py preprocessed/ --sorter kilosort4 --output sorting/

scripts/compute_metrics.py

Compute quality metrics and apply curation:

python scripts/compute_metrics.py sorting/ preprocessed/ --output metrics/ --curation allen

scripts/export_to_phy.py

Export to Phy for manual curation:

python scripts/export_to_phy.py metrics/analyzer --output phy_export/

assets/analysis_template.py

Complete analysis template. Copy and customize:

cp assets/analysis_template.py my_analysis.py
# Edit parameters and run
python my_analysis.py

reference/standard_workflow.md

Detailed step-by-step workflow with explanations for each stage.

reference/api_reference.md

Quick function reference organized by module.

reference/plotting_guide.md

Comprehensive visualization guide for publication-quality figures.

Detailed Reference Guides

Topic Reference
Full workflow reference/standard_workflow.md
API reference reference/api_reference.md
Plotting guide reference/plotting_guide.md
Preprocessing PREPROCESSING.md
Spike sorting SPIKE_SORTING.md
Motion correction MOTION_CORRECTION.md
Quality metrics QUALITY_METRICS.md
Automated curation AUTOMATED_CURATION.md
AI-assisted curation AI_CURATION.md
Waveform analysis ANALYSIS.md

Installation

# Core packages
pip install spikeinterface[full] probeinterface neo

# Spike sorters
pip install kilosort          # Kilosort4 (GPU required)
pip install spykingcircus     # SpykingCircus2 (CPU)
pip install mountainsort5     # Mountainsort5 (CPU)

# Our toolkit
pip install neuropixels-analysis

# Optional: AI curation
pip install anthropic

# Optional: IBL tools
pip install ibl-neuropixel ibllib

Project Structure

project/
├── raw_data/
│   └── recording_g0/
│       └── recording_g0_imec0/
│           ├── recording_g0_t0.imec0.ap.bin
│           └── recording_g0_t0.imec0.ap.meta
├── preprocessed/           # Saved preprocessed recording
├── motion/                 # Motion estimation results
├── sorting_output/         # Spike sorter output
├── analyzer/               # SortingAnalyzer (waveforms, metrics)
├── phy_export/             # For manual curation
├── ai_curation/            # AI analysis reports
└── results/
    ├── quality_metrics.csv
    ├── curation_labels.json
    └── output.nwb

Additional Resources