| name | citation-management |
| description | Comprehensive citation management for academic research. Search Google Scholar and PubMed for papers, extract accurate metadata, validate citations, and generate properly formatted BibTeX entries. This skill should be used when you need to find papers, verify citation information, convert DOIs to BibTeX, or ensure reference accuracy in scientific writing. |
Citation Management
Overview
Manage citations systematically throughout the research and writing process. This skill provides tools and strategies for searching academic databases (Google Scholar, PubMed), extracting accurate metadata from multiple sources (CrossRef, PubMed, arXiv), validating citation information, and generating properly formatted BibTeX entries.
Critical for maintaining citation accuracy, avoiding reference errors, and ensuring reproducible research. Integrates seamlessly with the literature-review skill for comprehensive research workflows.
When to Use This Skill
Use this skill when:
- Searching for specific papers on Google Scholar or PubMed
- Converting DOIs, PMIDs, or arXiv IDs to properly formatted BibTeX
- Extracting complete metadata for citations (authors, title, journal, year, etc.)
- Validating existing citations for accuracy
- Cleaning and formatting BibTeX files
- Finding highly cited papers in a specific field
- Verifying that citation information matches the actual publication
- Building a bibliography for a manuscript or thesis
- Checking for duplicate citations
- Ensuring consistent citation formatting
Core Workflow
Citation management follows a systematic process:
Phase 1: Paper Discovery and Search
Goal: Find relevant papers using academic search engines.
Google Scholar Search
Google Scholar provides the most comprehensive coverage across disciplines.
Basic Search:
# Search for papers on a topic
python scripts/search_google_scholar.py "CRISPR gene editing" \
--limit 50 \
--output results.json
# Search with year filter
python scripts/search_google_scholar.py "machine learning protein folding" \
--year-start 2020 \
--year-end 2024 \
--limit 100 \
--output ml_proteins.json
Advanced Search Strategies (see references/google_scholar_search.md):
- Use quotation marks for exact phrases:
"deep learning" - Search by author:
author:LeCun - Search in title:
intitle:"neural networks" - Exclude terms:
machine learning -survey - Find highly cited papers using sort options
- Filter by date ranges to get recent work
Best Practices:
- Use specific, targeted search terms
- Include key technical terms and acronyms
- Filter by recent years for fast-moving fields
- Check "Cited by" to find seminal papers
- Export top results for further analysis
PubMed Search
PubMed specializes in biomedical and life sciences literature (35+ million citations).
Basic Search:
# Search PubMed
python scripts/search_pubmed.py "Alzheimer's disease treatment" \
--limit 100 \
--output alzheimers.json
# Search with MeSH terms and filters
python scripts/search_pubmed.py \
--query '"Alzheimer Disease"[MeSH] AND "Drug Therapy"[MeSH]' \
--date-start 2020 \
--date-end 2024 \
--publication-types "Clinical Trial,Review" \
--output alzheimers_trials.json
Advanced PubMed Queries (see references/pubmed_search.md):
- Use MeSH terms:
"Diabetes Mellitus"[MeSH] - Field tags:
"cancer"[Title],"Smith J"[Author] - Boolean operators:
AND,OR,NOT - Date filters:
2020:2024[Publication Date] - Publication types:
"Review"[Publication Type] - Combine with E-utilities API for automation
Best Practices:
- Use MeSH Browser to find correct controlled vocabulary
- Construct complex queries in PubMed Advanced Search Builder first
- Include multiple synonyms with OR
- Retrieve PMIDs for easy metadata extraction
- Export to JSON or directly to BibTeX
Phase 2: Metadata Extraction
Goal: Convert paper identifiers (DOI, PMID, arXiv ID) to complete, accurate metadata.
Quick DOI to BibTeX Conversion
For single DOIs, use the quick conversion tool:
# Convert single DOI
python scripts/doi_to_bibtex.py 10.1038/s41586-021-03819-2
# Convert multiple DOIs from a file
python scripts/doi_to_bibtex.py --input dois.txt --output references.bib
# Different output formats
python scripts/doi_to_bibtex.py 10.1038/nature12345 --format json
Comprehensive Metadata Extraction
For DOIs, PMIDs, arXiv IDs, or URLs:
# Extract from DOI
python scripts/extract_metadata.py --doi 10.1038/s41586-021-03819-2
# Extract from PMID
python scripts/extract_metadata.py --pmid 34265844
# Extract from arXiv ID
python scripts/extract_metadata.py --arxiv 2103.14030
# Extract from URL
python scripts/extract_metadata.py --url "https://www.nature.com/articles/s41586-021-03819-2"
# Batch extraction from file (mixed identifiers)
python scripts/extract_metadata.py --input identifiers.txt --output citations.bib
Metadata Sources (see references/metadata_extraction.md):
CrossRef API: Primary source for DOIs
- Comprehensive metadata for journal articles
- Publisher-provided information
- Includes authors, title, journal, volume, pages, dates
- Free, no API key required
PubMed E-utilities: Biomedical literature
- Official NCBI metadata
- Includes MeSH terms, abstracts
- PMID and PMCID identifiers
- Free, API key recommended for high volume
arXiv API: Preprints in physics, math, CS, q-bio
- Complete metadata for preprints
- Version tracking
- Author affiliations
- Free, open access
DataCite API: Research datasets, software, other resources
- Metadata for non-traditional scholarly outputs
- DOIs for datasets and code
- Free access
What Gets Extracted:
- Required fields: author, title, year
- Journal articles: journal, volume, number, pages, DOI
- Books: publisher, ISBN, edition
- Conference papers: booktitle, conference location, pages
- Preprints: repository (arXiv, bioRxiv), preprint ID
- Additional: abstract, keywords, URL
Phase 3: BibTeX Formatting
Goal: Generate clean, properly formatted BibTeX entries.
Understanding BibTeX Entry Types
See references/bibtex_formatting.md for complete guide.
Common Entry Types:
@article: Journal articles (most common)@book: Books@inproceedings: Conference papers@incollection: Book chapters@phdthesis: Dissertations@misc: Preprints, software, datasets
Required Fields by Type:
@article{citationkey,
author = {Last1, First1 and Last2, First2},
title = {Article Title},
journal = {Journal Name},
year = {2024},
volume = {10},
number = {3},
pages = {123--145},
doi = {10.1234/example}
}
@inproceedings{citationkey,
author = {Last, First},
title = {Paper Title},
booktitle = {Conference Name},
year = {2024},
pages = {1--10}
}
@book{citationkey,
author = {Last, First},
title = {Book Title},
publisher = {Publisher Name},
year = {2024}
}
Formatting and Cleaning
Use the formatter to standardize BibTeX files:
# Format and clean BibTeX file
python scripts/format_bibtex.py references.bib \
--output formatted_references.bib
# Sort entries by citation key
python scripts/format_bibtex.py references.bib \
--sort key \
--output sorted_references.bib
# Sort by year (newest first)
python scripts/format_bibtex.py references.bib \
--sort year \
--descending \
--output sorted_references.bib
# Remove duplicates
python scripts/format_bibtex.py references.bib \
--deduplicate \
--output clean_references.bib
# Validate and report issues
python scripts/format_bibtex.py references.bib \
--validate \
--report validation_report.txt
Formatting Operations:
- Standardize field order
- Consistent indentation and spacing
- Proper capitalization in titles (protected with {})
- Standardized author name format
- Consistent citation key format
- Remove unnecessary fields
- Fix common errors (missing commas, braces)
Phase 4: Citation Validation
Goal: Verify all citations are accurate and complete.
Comprehensive Validation
# Validate BibTeX file
python scripts/validate_citations.py references.bib
# Validate and fix common issues
python scripts/validate_citations.py references.bib \
--auto-fix \
--output validated_references.bib
# Generate detailed validation report
python scripts/validate_citations.py references.bib \
--report validation_report.json \
--verbose
Validation Checks (see references/citation_validation.md):
DOI Verification:
- DOI resolves correctly via doi.org
- Metadata matches between BibTeX and CrossRef
- No broken or invalid DOIs
Required Fields:
- All required fields present for entry type
- No empty or missing critical information
- Author names properly formatted
Data Consistency:
- Year is valid (4 digits, reasonable range)
- Volume/number are numeric
- Pages formatted correctly (e.g., 123--145)
- URLs are accessible
Duplicate Detection:
- Same DOI used multiple times
- Similar titles (possible duplicates)
- Same author/year/title combinations
Format Compliance:
- Valid BibTeX syntax
- Proper bracing and quoting
- Citation keys are unique
- Special characters handled correctly
Validation Output:
{
"total_entries": 150,
"valid_entries": 145,
"errors": [
{
"citation_key": "Smith2023",
"error_type": "missing_field",
"field": "journal",
"severity": "high"
},
{
"citation_key": "Jones2022",
"error_type": "invalid_doi",
"doi": "10.1234/broken",
"severity": "high"
}
],
"warnings": [
{
"citation_key": "Brown2021",
"warning_type": "possible_duplicate",
"duplicate_of": "Brown2021a",
"severity": "medium"
}
]
}
Phase 5: Integration with Writing Workflow
Building References for Manuscripts
Complete workflow for creating a bibliography:
# 1. Search for papers on your topic
python scripts/search_pubmed.py \
'"CRISPR-Cas Systems"[MeSH] AND "Gene Editing"[MeSH]' \
--date-start 2020 \
--limit 200 \
--output crispr_papers.json
# 2. Extract DOIs from search results and convert to BibTeX
python scripts/extract_metadata.py \
--input crispr_papers.json \
--output crispr_refs.bib
# 3. Add specific papers by DOI
python scripts/doi_to_bibtex.py 10.1038/nature12345 >> crispr_refs.bib
python scripts/doi_to_bibtex.py 10.1126/science.abcd1234 >> crispr_refs.bib
# 4. Format and clean the BibTeX file
python scripts/format_bibtex.py crispr_refs.bib \
--deduplicate \
--sort year \
--descending \
--output references.bib
# 5. Validate all citations
python scripts/validate_citations.py references.bib \
--auto-fix \
--report validation.json \
--output final_references.bib
# 6. Review validation report and fix any remaining issues
cat validation.json
# 7. Use in your LaTeX document
# \bibliography{final_references}
Integration with Literature Review Skill
This skill complements the literature-review skill:
Literature Review Skill → Systematic search and synthesis Citation Management Skill → Technical citation handling
Combined Workflow:
- Use
literature-reviewfor comprehensive multi-database search - Use
citation-managementto extract and validate all citations - Use
literature-reviewto synthesize findings thematically - Use
citation-managementto verify final bibliography accuracy
# After completing literature review
# Verify all citations in the review document
python scripts/validate_citations.py my_review_references.bib --report review_validation.json
# Format for specific citation style if needed
python scripts/format_bibtex.py my_review_references.bib \
--style nature \
--output formatted_refs.bib
Search Strategies
Google Scholar Best Practices
Finding Seminal Papers:
- Sort by citation count (most cited first)
- Look for review articles for overview
- Check "Cited by" for impact assessment
- Use citation alerts for tracking new citations
Advanced Operators (full list in references/google_scholar_search.md):
"exact phrase" # Exact phrase matching
author:lastname # Search by author
intitle:keyword # Search in title only
source:journal # Search specific journal
-exclude # Exclude terms
OR # Alternative terms
2020..2024 # Year range
Example Searches:
# Find recent reviews on a topic
"CRISPR" intitle:review 2023..2024
# Find papers by specific author on topic
author:Church "synthetic biology"
# Find highly cited foundational work
"deep learning" 2012..2015 sort:citations
# Exclude surveys and focus on methods
"protein folding" -survey -review intitle:method
PubMed Best Practices
Using MeSH Terms: MeSH (Medical Subject Headings) provides controlled vocabulary for precise searching.
- Find MeSH terms at https://meshb.nlm.nih.gov/search
- Use in queries:
"Diabetes Mellitus, Type 2"[MeSH] - Combine with keywords for comprehensive coverage
Field Tags:
[Title] # Search in title only
[Title/Abstract] # Search in title or abstract
[Author] # Search by author name
[Journal] # Search specific journal
[Publication Date] # Date range
[Publication Type] # Article type
[MeSH] # MeSH term
Building Complex Queries:
# Clinical trials on diabetes treatment published recently
"Diabetes Mellitus, Type 2"[MeSH] AND "Drug Therapy"[MeSH]
AND "Clinical Trial"[Publication Type] AND 2020:2024[Publication Date]
# Reviews on CRISPR in specific journal
"CRISPR-Cas Systems"[MeSH] AND "Nature"[Journal] AND "Review"[Publication Type]
# Specific author's recent work
"Smith AB"[Author] AND cancer[Title/Abstract] AND 2022:2024[Publication Date]
E-utilities for Automation: The scripts use NCBI E-utilities API for programmatic access:
- ESearch: Search and retrieve PMIDs
- EFetch: Retrieve full metadata
- ESummary: Get summary information
- ELink: Find related articles
See references/pubmed_search.md for complete API documentation.
Tools and Scripts
search_google_scholar.py
Search Google Scholar and export results.
Features:
- Automated searching with rate limiting
- Pagination support
- Year range filtering
- Export to JSON or BibTeX
- Citation count information
Usage:
# Basic search
python scripts/search_google_scholar.py "quantum computing"
# Advanced search with filters
python scripts/search_google_scholar.py "quantum computing" \
--year-start 2020 \
--year-end 2024 \
--limit 100 \
--sort-by citations \
--output quantum_papers.json
# Export directly to BibTeX
python scripts/search_google_scholar.py "machine learning" \
--limit 50 \
--format bibtex \
--output ml_papers.bib
search_pubmed.py
Search PubMed using E-utilities API.
Features:
- Complex query support (MeSH, field tags, Boolean)
- Date range filtering
- Publication type filtering
- Batch retrieval with metadata
- Export to JSON or BibTeX
Usage:
# Simple keyword search
python scripts/search_pubmed.py "CRISPR gene editing"
# Complex query with filters
python scripts/search_pubmed.py \
--query '"CRISPR-Cas Systems"[MeSH] AND "therapeutic"[Title/Abstract]' \
--date-start 2020-01-01 \
--date-end 2024-12-31 \
--publication-types "Clinical Trial,Review" \
--limit 200 \
--output crispr_therapeutic.json
# Export to BibTeX
python scripts/search_pubmed.py "Alzheimer's disease" \
--limit 100 \
--format bibtex \
--output alzheimers.bib
extract_metadata.py
Extract complete metadata from paper identifiers.
Features:
- Supports DOI, PMID, arXiv ID, URL
- Queries CrossRef, PubMed, arXiv APIs
- Handles multiple identifier types
- Batch processing
- Multiple output formats
Usage:
# Single DOI
python scripts/extract_metadata.py --doi 10.1038/s41586-021-03819-2
# Single PMID
python scripts/extract_metadata.py --pmid 34265844
# Single arXiv ID
python scripts/extract_metadata.py --arxiv 2103.14030
# From URL
python scripts/extract_metadata.py \
--url "https://www.nature.com/articles/s41586-021-03819-2"
# Batch processing (file with one identifier per line)
python scripts/extract_metadata.py \
--input paper_ids.txt \
--output references.bib
# Different output formats
python scripts/extract_metadata.py \
--doi 10.1038/nature12345 \
--format json # or bibtex, yaml
validate_citations.py
Validate BibTeX entries for accuracy and completeness.
Features:
- DOI verification via doi.org and CrossRef
- Required field checking
- Duplicate detection
- Format validation
- Auto-fix common issues
- Detailed reporting
Usage:
# Basic validation
python scripts/validate_citations.py references.bib
# With auto-fix
python scripts/validate_citations.py references.bib \
--auto-fix \
--output fixed_references.bib
# Detailed validation report
python scripts/validate_citations.py references.bib \
--report validation_report.json \
--verbose
# Only check DOIs
python scripts/validate_citations.py references.bib \
--check-dois-only
format_bibtex.py
Format and clean BibTeX files.
Features:
- Standardize formatting
- Sort entries (by key, year, author)
- Remove duplicates
- Validate syntax
- Fix common errors
- Enforce citation key conventions
Usage:
# Basic formatting
python scripts/format_bibtex.py references.bib
# Sort by year (newest first)
python scripts/format_bibtex.py references.bib \
--sort year \
--descending \
--output sorted_refs.bib
# Remove duplicates
python scripts/format_bibtex.py references.bib \
--deduplicate \
--output clean_refs.bib
# Complete cleanup
python scripts/format_bibtex.py references.bib \
--deduplicate \
--sort year \
--validate \
--auto-fix \
--output final_refs.bib
doi_to_bibtex.py
Quick DOI to BibTeX conversion.
Features:
- Fast single DOI conversion
- Batch processing
- Multiple output formats
- Clipboard support
Usage:
# Single DOI
python scripts/doi_to_bibtex.py 10.1038/s41586-021-03819-2
# Multiple DOIs
python scripts/doi_to_bibtex.py \
10.1038/nature12345 \
10.1126/science.abc1234 \
10.1016/j.cell.2023.01.001
# From file (one DOI per line)
python scripts/doi_to_bibtex.py --input dois.txt --output references.bib
# Copy to clipboard
python scripts/doi_to_bibtex.py 10.1038/nature12345 --clipboard
Best Practices
Search Strategy
Start broad, then narrow:
- Begin with general terms to understand the field
- Refine with specific keywords and filters
- Use synonyms and related terms
Use multiple sources:
- Google Scholar for comprehensive coverage
- PubMed for biomedical focus
- arXiv for preprints
- Combine results for completeness
Leverage citations:
- Check "Cited by" for seminal papers
- Review references from key papers
- Use citation networks to discover related work
Document your searches:
- Save search queries and dates
- Record number of results
- Note any filters or restrictions applied
Metadata Extraction
Always use DOIs when available:
- Most reliable identifier
- Permanent link to the publication
- Best metadata source via CrossRef
Verify extracted metadata:
- Check author names are correct
- Verify journal/conference names
- Confirm publication year
- Validate page numbers and volume
Handle edge cases:
- Preprints: Include repository and ID
- Preprints later published: Use published version
- Conference papers: Include conference name and location
- Book chapters: Include book title and editors
Maintain consistency:
- Use consistent author name format
- Standardize journal abbreviations
- Use same DOI format (URL preferred)
BibTeX Quality
Follow conventions:
- Use meaningful citation keys (FirstAuthor2024keyword)
- Protect capitalization in titles with {}
- Use -- for page ranges (not single dash)
- Include DOI field for all modern publications
Keep it clean:
- Remove unnecessary fields
- No redundant information
- Consistent formatting
- Validate syntax regularly
Organize systematically:
- Sort by year or topic
- Group related papers
- Use separate files for different projects
- Merge carefully to avoid duplicates
Validation
Validate early and often:
- Check citations when adding them
- Validate complete bibliography before submission
- Re-validate after any manual edits
Fix issues promptly:
- Broken DOIs: Find correct identifier
- Missing fields: Extract from original source
- Duplicates: Choose best version, remove others
- Format errors: Use auto-fix when safe
Manual review for critical citations:
- Verify key papers cited correctly
- Check author names match publication
- Confirm page numbers and volume
- Ensure URLs are current
Common Pitfalls to Avoid
Single source bias: Only using Google Scholar or PubMed
- Solution: Search multiple databases for comprehensive coverage
Accepting metadata blindly: Not verifying extracted information
- Solution: Spot-check extracted metadata against original sources
Ignoring DOI errors: Broken or incorrect DOIs in bibliography
- Solution: Run validation before final submission
Inconsistent formatting: Mixed citation key styles, formatting
- Solution: Use format_bibtex.py to standardize
Duplicate entries: Same paper cited multiple times with different keys
- Solution: Use duplicate detection in validation
Missing required fields: Incomplete BibTeX entries
- Solution: Validate and ensure all required fields present
Outdated preprints: Citing preprint when published version exists
- Solution: Check if preprints have been published, update to journal version
Special character issues: Broken LaTeX compilation due to characters
- Solution: Use proper escaping or Unicode in BibTeX
No validation before submission: Submitting with citation errors
- Solution: Always run validation as final check
Manual BibTeX entry: Typing entries by hand
- Solution: Always extract from metadata sources using scripts
Example Workflows
Example 1: Building a Bibliography for a Paper
# Step 1: Find key papers on your topic
python scripts/search_google_scholar.py "transformer neural networks" \
--year-start 2017 \
--limit 50 \
--output transformers_gs.json
python scripts/search_pubmed.py "deep learning medical imaging" \
--date-start 2020 \
--limit 50 \
--output medical_dl_pm.json
# Step 2: Extract metadata from search results
python scripts/extract_metadata.py \
--input transformers_gs.json \
--output transformers.bib
python scripts/extract_metadata.py \
--input medical_dl_pm.json \
--output medical.bib
# Step 3: Add specific papers you already know
python scripts/doi_to_bibtex.py 10.1038/s41586-021-03819-2 >> specific.bib
python scripts/doi_to_bibtex.py 10.1126/science.aam9317 >> specific.bib
# Step 4: Combine all BibTeX files
cat transformers.bib medical.bib specific.bib > combined.bib
# Step 5: Format and deduplicate
python scripts/format_bibtex.py combined.bib \
--deduplicate \
--sort year \
--descending \
--output formatted.bib
# Step 6: Validate
python scripts/validate_citations.py formatted.bib \
--auto-fix \
--report validation.json \
--output final_references.bib
# Step 7: Review any issues
cat validation.json | grep -A 3 '"errors"'
# Step 8: Use in LaTeX
# \bibliography{final_references}
Example 2: Converting a List of DOIs
# You have a text file with DOIs (one per line)
# dois.txt contains:
# 10.1038/s41586-021-03819-2
# 10.1126/science.aam9317
# 10.1016/j.cell.2023.01.001
# Convert all to BibTeX
python scripts/doi_to_bibtex.py --input dois.txt --output references.bib
# Validate the result
python scripts/validate_citations.py references.bib --verbose
Example 3: Cleaning an Existing BibTeX File
# You have a messy BibTeX file from various sources
# Clean it up systematically
# Step 1: Format and standardize
python scripts/format_bibtex.py messy_references.bib \
--output step1_formatted.bib
# Step 2: Remove duplicates
python scripts/format_bibtex.py step1_formatted.bib \
--deduplicate \
--output step2_deduplicated.bib
# Step 3: Validate and auto-fix
python scripts/validate_citations.py step2_deduplicated.bib \
--auto-fix \
--output step3_validated.bib
# Step 4: Sort by year
python scripts/format_bibtex.py step3_validated.bib \
--sort year \
--descending \
--output clean_references.bib
# Step 5: Final validation report
python scripts/validate_citations.py clean_references.bib \
--report final_validation.json \
--verbose
# Review report
cat final_validation.json
Example 4: Finding and Citing Seminal Papers
# Find highly cited papers on a topic
python scripts/search_google_scholar.py "AlphaFold protein structure" \
--year-start 2020 \
--year-end 2024 \
--sort-by citations \
--limit 20 \
--output alphafold_seminal.json
# Extract the top 10 by citation count
# (script will have included citation counts in JSON)
# Convert to BibTeX
python scripts/extract_metadata.py \
--input alphafold_seminal.json \
--output alphafold_refs.bib
# The BibTeX file now contains the most influential papers
Integration with Other Skills
Literature Review Skill
Citation Management provides the technical infrastructure for Literature Review:
- Literature Review: Multi-database systematic search and synthesis
- Citation Management: Metadata extraction and validation
Combined workflow:
- Use literature-review for systematic search methodology
- Use citation-management to extract and validate citations
- Use literature-review to synthesize findings
- Use citation-management to ensure bibliography accuracy
Scientific Writing Skill
Citation Management ensures accurate references for Scientific Writing:
- Export validated BibTeX for use in LaTeX manuscripts
- Verify citations match publication standards
- Format references according to journal requirements
Venue Templates Skill
Citation Management works with Venue Templates for submission-ready manuscripts:
- Different venues require different citation styles
- Generate properly formatted references
- Validate citations meet venue requirements
Resources
Bundled Resources
References (in references/):
google_scholar_search.md: Complete Google Scholar search guidepubmed_search.md: PubMed and E-utilities API documentationmetadata_extraction.md: Metadata sources and field requirementscitation_validation.md: Validation criteria and quality checksbibtex_formatting.md: BibTeX entry types and formatting rules
Scripts (in scripts/):
search_google_scholar.py: Google Scholar search automationsearch_pubmed.py: PubMed E-utilities API clientextract_metadata.py: Universal metadata extractorvalidate_citations.py: Citation validation and verificationformat_bibtex.py: BibTeX formatter and cleanerdoi_to_bibtex.py: Quick DOI to BibTeX converter
Assets (in assets/):
bibtex_template.bib: Example BibTeX entries for all typescitation_checklist.md: Quality assurance checklist
External Resources
Search Engines:
- Google Scholar: https://scholar.google.com/
- PubMed: https://pubmed.ncbi.nlm.nih.gov/
- PubMed Advanced Search: https://pubmed.ncbi.nlm.nih.gov/advanced/
Metadata APIs:
- CrossRef API: https://api.crossref.org/
- PubMed E-utilities: https://www.ncbi.nlm.nih.gov/books/NBK25501/
- arXiv API: https://arxiv.org/help/api/
- DataCite API: https://api.datacite.org/
Tools and Validators:
- MeSH Browser: https://meshb.nlm.nih.gov/search
- DOI Resolver: https://doi.org/
- BibTeX Format: http://www.bibtex.org/Format/
Citation Styles:
- BibTeX documentation: http://www.bibtex.org/
- LaTeX bibliography management: https://www.overleaf.com/learn/latex/Bibliography_management
Dependencies
Required Python Packages
# Core dependencies
pip install requests # HTTP requests for APIs
pip install bibtexparser # BibTeX parsing and formatting
pip install biopython # PubMed E-utilities access
# Optional (for Google Scholar)
pip install scholarly # Google Scholar API wrapper
# or
pip install selenium # For more robust Scholar scraping
Optional Tools
# For advanced validation
pip install crossref-commons # Enhanced CrossRef API access
pip install pylatexenc # LaTeX special character handling
Summary
The citation-management skill provides:
- Comprehensive search capabilities for Google Scholar and PubMed
- Automated metadata extraction from DOI, PMID, arXiv ID, URLs
- Citation validation with DOI verification and completeness checking
- BibTeX formatting with standardization and cleaning tools
- Quality assurance through validation and reporting
- Integration with scientific writing workflow
- Reproducibility through documented search and extraction methods
Use this skill to maintain accurate, complete citations throughout your research and ensure publication-ready bibliographies.