Claude Code Plugins

Community-maintained marketplace

Feedback

Convert files and office documents to Markdown. Supports PDF, DOCX, PPTX, XLSX, images (with OCR), audio (with transcription), HTML, CSV, JSON, XML, ZIP, YouTube URLs, EPubs and more.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name markitdown
description Convert files and office documents to Markdown. Supports PDF, DOCX, PPTX, XLSX, images (with OCR), audio (with transcription), HTML, CSV, JSON, XML, ZIP, YouTube URLs, EPubs and more.
license MIT
source https://github.com/microsoft/markitdown

MarkItDown - File to Markdown Conversion

Overview

MarkItDown is a Python tool developed by Microsoft for converting various file formats to Markdown. It's particularly useful for converting documents into LLM-friendly text format, as Markdown is token-efficient and well-understood by modern language models.

Key Benefits:

  • Convert documents to clean, structured Markdown
  • Token-efficient format for LLM processing
  • Supports 15+ file formats
  • Optional AI-enhanced image descriptions
  • OCR for images and scanned documents
  • Speech transcription for audio files

Supported Formats

Format Description Notes
PDF Portable Document Format Full text extraction
DOCX Microsoft Word Tables, formatting preserved
PPTX PowerPoint Slides with notes
XLSX Excel spreadsheets Tables and data
Images JPEG, PNG, GIF, WebP EXIF metadata + OCR
Audio WAV, MP3 Metadata + transcription
HTML Web pages Clean conversion
CSV Comma-separated values Table format
JSON JSON data Structured representation
XML XML documents Structured format
ZIP Archive files Iterates contents
EPUB E-books Full text extraction
YouTube Video URLs Fetch transcriptions

Quick Start

Installation

# Install with all features
pip install 'markitdown[all]'

# Or from source
git clone https://github.com/microsoft/markitdown.git
cd markitdown
pip install -e 'packages/markitdown[all]'

Command-Line Usage

# Basic conversion
markitdown document.pdf > output.md

# Specify output file
markitdown document.pdf -o output.md

# Pipe content
cat document.pdf | markitdown > output.md

# Enable plugins
markitdown --list-plugins  # List available plugins
markitdown --use-plugins document.pdf -o output.md

Python API

from markitdown import MarkItDown

# Basic usage
md = MarkItDown()
result = md.convert("document.pdf")
print(result.text_content)

# Convert from stream
with open("document.pdf", "rb") as f:
    result = md.convert_stream(f, file_extension=".pdf")
    print(result.text_content)

Advanced Features

1. AI-Enhanced Image Descriptions

Use LLMs via OpenRouter to generate detailed image descriptions (for PPTX and image files):

from markitdown import MarkItDown
from openai import OpenAI

# Initialize OpenRouter client (OpenAI-compatible API)
client = OpenAI(
    api_key="your-openrouter-api-key",
    base_url="https://openrouter.ai/api/v1"
)

md = MarkItDown(
    llm_client=client,
    llm_model="anthropic/claude-sonnet-4.5",  # recommended for scientific vision
    llm_prompt="Describe this image in detail for scientific documentation"
)

result = md.convert("presentation.pptx")
print(result.text_content)

2. Azure Document Intelligence

For enhanced PDF conversion with Microsoft Document Intelligence:

# Command line
markitdown document.pdf -o output.md -d -e "<document_intelligence_endpoint>"
# Python API
from markitdown import MarkItDown

md = MarkItDown(docintel_endpoint="<document_intelligence_endpoint>")
result = md.convert("complex_document.pdf")
print(result.text_content)

3. Plugin System

MarkItDown supports 3rd-party plugins for extending functionality:

# List installed plugins
markitdown --list-plugins

# Enable plugins
markitdown --use-plugins file.pdf -o output.md

Find plugins on GitHub with hashtag: #markitdown-plugin

Optional Dependencies

Control which file formats you support:

# Install specific formats
pip install 'markitdown[pdf, docx, pptx]'

# All available options:
# [all]                  - All optional dependencies
# [pptx]                 - PowerPoint files
# [docx]                 - Word documents
# [xlsx]                 - Excel spreadsheets
# [xls]                  - Older Excel files
# [pdf]                  - PDF documents
# [outlook]              - Outlook messages
# [az-doc-intel]         - Azure Document Intelligence
# [audio-transcription]  - WAV and MP3 transcription
# [youtube-transcription] - YouTube video transcription

Common Use Cases

1. Convert Scientific Papers to Markdown

from markitdown import MarkItDown

md = MarkItDown()

# Convert PDF paper
result = md.convert("research_paper.pdf")
with open("paper.md", "w") as f:
    f.write(result.text_content)

2. Extract Data from Excel for Analysis

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("data.xlsx")

# Result will be in Markdown table format
print(result.text_content)

3. Process Multiple Documents

from markitdown import MarkItDown
import os
from pathlib import Path

md = MarkItDown()

# Process all PDFs in a directory
pdf_dir = Path("papers/")
output_dir = Path("markdown_output/")
output_dir.mkdir(exist_ok=True)

for pdf_file in pdf_dir.glob("*.pdf"):
    result = md.convert(str(pdf_file))
    output_file = output_dir / f"{pdf_file.stem}.md"
    output_file.write_text(result.text_content)
    print(f"Converted: {pdf_file.name}")

4. Convert PowerPoint with AI Descriptions

from markitdown import MarkItDown
from openai import OpenAI

# Use OpenRouter for access to multiple AI models
client = OpenAI(
    api_key="your-openrouter-api-key",
    base_url="https://openrouter.ai/api/v1"
)

md = MarkItDown(
    llm_client=client,
    llm_model="anthropic/claude-sonnet-4.5",  # recommended for presentations
    llm_prompt="Describe this slide image in detail, focusing on key visual elements and data"
)

result = md.convert("presentation.pptx")
with open("presentation.md", "w") as f:
    f.write(result.text_content)

5. Batch Convert with Different Formats

from markitdown import MarkItDown
from pathlib import Path

md = MarkItDown()

# Files to convert
files = [
    "document.pdf",
    "spreadsheet.xlsx",
    "presentation.pptx",
    "notes.docx"
]

for file in files:
    try:
        result = md.convert(file)
        output = Path(file).stem + ".md"
        with open(output, "w") as f:
            f.write(result.text_content)
        print(f"✓ Converted {file}")
    except Exception as e:
        print(f"✗ Error converting {file}: {e}")

6. Extract YouTube Video Transcription

from markitdown import MarkItDown

md = MarkItDown()

# Convert YouTube video to transcript
result = md.convert("https://www.youtube.com/watch?v=VIDEO_ID")
print(result.text_content)

Docker Usage

# Build image
docker build -t markitdown:latest .

# Run conversion
docker run --rm -i markitdown:latest < ~/document.pdf > output.md

Best Practices

1. Choose the Right Conversion Method

  • Simple documents: Use basic MarkItDown()
  • Complex PDFs: Use Azure Document Intelligence
  • Visual content: Enable AI image descriptions
  • Scanned documents: Ensure OCR dependencies are installed

2. Handle Errors Gracefully

from markitdown import MarkItDown

md = MarkItDown()

try:
    result = md.convert("document.pdf")
    print(result.text_content)
except FileNotFoundError:
    print("File not found")
except Exception as e:
    print(f"Conversion error: {e}")

3. Process Large Files Efficiently

from markitdown import MarkItDown

md = MarkItDown()

# For large files, use streaming
with open("large_file.pdf", "rb") as f:
    result = md.convert_stream(f, file_extension=".pdf")
    
    # Process in chunks or save directly
    with open("output.md", "w") as out:
        out.write(result.text_content)

4. Optimize for Token Efficiency

Markdown output is already token-efficient, but you can:

  • Remove excessive whitespace
  • Consolidate similar sections
  • Strip metadata if not needed
from markitdown import MarkItDown
import re

md = MarkItDown()
result = md.convert("document.pdf")

# Clean up extra whitespace
clean_text = re.sub(r'\n{3,}', '\n\n', result.text_content)
clean_text = clean_text.strip()

print(clean_text)

Integration with Scientific Workflows

Convert Literature for Review

from markitdown import MarkItDown
from pathlib import Path

md = MarkItDown()

# Convert all papers in literature folder
papers_dir = Path("literature/pdfs")
output_dir = Path("literature/markdown")
output_dir.mkdir(exist_ok=True)

for paper in papers_dir.glob("*.pdf"):
    result = md.convert(str(paper))
    
    # Save with metadata
    output_file = output_dir / f"{paper.stem}.md"
    content = f"# {paper.stem}\n\n"
    content += f"**Source**: {paper.name}\n\n"
    content += "---\n\n"
    content += result.text_content
    
    output_file.write_text(content)

# For AI-enhanced conversion with figures
from openai import OpenAI

client = OpenAI(
    api_key="your-openrouter-api-key",
    base_url="https://openrouter.ai/api/v1"
)

md_ai = MarkItDown(
    llm_client=client,
    llm_model="anthropic/claude-sonnet-4.5",
    llm_prompt="Describe scientific figures with technical precision"
)

Extract Tables for Analysis

from markitdown import MarkItDown
import re

md = MarkItDown()
result = md.convert("data_tables.xlsx")

# Markdown tables can be parsed or used directly
print(result.text_content)

Troubleshooting

Common Issues

  1. Missing dependencies: Install feature-specific packages

    pip install 'markitdown[pdf]'  # For PDF support
    
  2. Binary file errors: Ensure files are opened in binary mode

    with open("file.pdf", "rb") as f:  # Note the "rb"
        result = md.convert_stream(f, file_extension=".pdf")
    
  3. OCR not working: Install tesseract

    # macOS
    brew install tesseract
    
    # Ubuntu
    sudo apt-get install tesseract-ocr
    

Performance Considerations

  • PDF files: Large PDFs may take time; consider page ranges if supported
  • Image OCR: OCR processing is CPU-intensive
  • Audio transcription: Requires additional compute resources
  • AI image descriptions: Requires API calls (costs may apply)

Next Steps

  • See references/api_reference.md for complete API documentation
  • Check references/file_formats.md for format-specific details
  • Review scripts/batch_convert.py for automation examples
  • Explore scripts/convert_with_ai.py for AI-enhanced conversions

Resources