| name | markitdown |
| description | Convert files and office documents to Markdown. Supports PDF, DOCX, PPTX, XLSX, images (with OCR), audio (with transcription), HTML, CSV, JSON, XML, ZIP, YouTube URLs, EPubs and more. |
| license | MIT |
| source | https://github.com/microsoft/markitdown |
MarkItDown - File to Markdown Conversion
Overview
MarkItDown is a Python tool developed by Microsoft for converting various file formats to Markdown. It's particularly useful for converting documents into LLM-friendly text format, as Markdown is token-efficient and well-understood by modern language models.
Key Benefits:
- Convert documents to clean, structured Markdown
- Token-efficient format for LLM processing
- Supports 15+ file formats
- Optional AI-enhanced image descriptions
- OCR for images and scanned documents
- Speech transcription for audio files
Supported Formats
| Format | Description | Notes |
|---|---|---|
| Portable Document Format | Full text extraction | |
| DOCX | Microsoft Word | Tables, formatting preserved |
| PPTX | PowerPoint | Slides with notes |
| XLSX | Excel spreadsheets | Tables and data |
| Images | JPEG, PNG, GIF, WebP | EXIF metadata + OCR |
| Audio | WAV, MP3 | Metadata + transcription |
| HTML | Web pages | Clean conversion |
| CSV | Comma-separated values | Table format |
| JSON | JSON data | Structured representation |
| XML | XML documents | Structured format |
| ZIP | Archive files | Iterates contents |
| EPUB | E-books | Full text extraction |
| YouTube | Video URLs | Fetch transcriptions |
Quick Start
Installation
# Install with all features
pip install 'markitdown[all]'
# Or from source
git clone https://github.com/microsoft/markitdown.git
cd markitdown
pip install -e 'packages/markitdown[all]'
Command-Line Usage
# Basic conversion
markitdown document.pdf > output.md
# Specify output file
markitdown document.pdf -o output.md
# Pipe content
cat document.pdf | markitdown > output.md
# Enable plugins
markitdown --list-plugins # List available plugins
markitdown --use-plugins document.pdf -o output.md
Python API
from markitdown import MarkItDown
# Basic usage
md = MarkItDown()
result = md.convert("document.pdf")
print(result.text_content)
# Convert from stream
with open("document.pdf", "rb") as f:
result = md.convert_stream(f, file_extension=".pdf")
print(result.text_content)
Advanced Features
1. AI-Enhanced Image Descriptions
Use LLMs via OpenRouter to generate detailed image descriptions (for PPTX and image files):
from markitdown import MarkItDown
from openai import OpenAI
# Initialize OpenRouter client (OpenAI-compatible API)
client = OpenAI(
api_key="your-openrouter-api-key",
base_url="https://openrouter.ai/api/v1"
)
md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5", # recommended for scientific vision
llm_prompt="Describe this image in detail for scientific documentation"
)
result = md.convert("presentation.pptx")
print(result.text_content)
2. Azure Document Intelligence
For enhanced PDF conversion with Microsoft Document Intelligence:
# Command line
markitdown document.pdf -o output.md -d -e "<document_intelligence_endpoint>"
# Python API
from markitdown import MarkItDown
md = MarkItDown(docintel_endpoint="<document_intelligence_endpoint>")
result = md.convert("complex_document.pdf")
print(result.text_content)
3. Plugin System
MarkItDown supports 3rd-party plugins for extending functionality:
# List installed plugins
markitdown --list-plugins
# Enable plugins
markitdown --use-plugins file.pdf -o output.md
Find plugins on GitHub with hashtag: #markitdown-plugin
Optional Dependencies
Control which file formats you support:
# Install specific formats
pip install 'markitdown[pdf, docx, pptx]'
# All available options:
# [all] - All optional dependencies
# [pptx] - PowerPoint files
# [docx] - Word documents
# [xlsx] - Excel spreadsheets
# [xls] - Older Excel files
# [pdf] - PDF documents
# [outlook] - Outlook messages
# [az-doc-intel] - Azure Document Intelligence
# [audio-transcription] - WAV and MP3 transcription
# [youtube-transcription] - YouTube video transcription
Common Use Cases
1. Convert Scientific Papers to Markdown
from markitdown import MarkItDown
md = MarkItDown()
# Convert PDF paper
result = md.convert("research_paper.pdf")
with open("paper.md", "w") as f:
f.write(result.text_content)
2. Extract Data from Excel for Analysis
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.xlsx")
# Result will be in Markdown table format
print(result.text_content)
3. Process Multiple Documents
from markitdown import MarkItDown
import os
from pathlib import Path
md = MarkItDown()
# Process all PDFs in a directory
pdf_dir = Path("papers/")
output_dir = Path("markdown_output/")
output_dir.mkdir(exist_ok=True)
for pdf_file in pdf_dir.glob("*.pdf"):
result = md.convert(str(pdf_file))
output_file = output_dir / f"{pdf_file.stem}.md"
output_file.write_text(result.text_content)
print(f"Converted: {pdf_file.name}")
4. Convert PowerPoint with AI Descriptions
from markitdown import MarkItDown
from openai import OpenAI
# Use OpenRouter for access to multiple AI models
client = OpenAI(
api_key="your-openrouter-api-key",
base_url="https://openrouter.ai/api/v1"
)
md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5", # recommended for presentations
llm_prompt="Describe this slide image in detail, focusing on key visual elements and data"
)
result = md.convert("presentation.pptx")
with open("presentation.md", "w") as f:
f.write(result.text_content)
5. Batch Convert with Different Formats
from markitdown import MarkItDown
from pathlib import Path
md = MarkItDown()
# Files to convert
files = [
"document.pdf",
"spreadsheet.xlsx",
"presentation.pptx",
"notes.docx"
]
for file in files:
try:
result = md.convert(file)
output = Path(file).stem + ".md"
with open(output, "w") as f:
f.write(result.text_content)
print(f"✓ Converted {file}")
except Exception as e:
print(f"✗ Error converting {file}: {e}")
6. Extract YouTube Video Transcription
from markitdown import MarkItDown
md = MarkItDown()
# Convert YouTube video to transcript
result = md.convert("https://www.youtube.com/watch?v=VIDEO_ID")
print(result.text_content)
Docker Usage
# Build image
docker build -t markitdown:latest .
# Run conversion
docker run --rm -i markitdown:latest < ~/document.pdf > output.md
Best Practices
1. Choose the Right Conversion Method
- Simple documents: Use basic
MarkItDown() - Complex PDFs: Use Azure Document Intelligence
- Visual content: Enable AI image descriptions
- Scanned documents: Ensure OCR dependencies are installed
2. Handle Errors Gracefully
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("document.pdf")
print(result.text_content)
except FileNotFoundError:
print("File not found")
except Exception as e:
print(f"Conversion error: {e}")
3. Process Large Files Efficiently
from markitdown import MarkItDown
md = MarkItDown()
# For large files, use streaming
with open("large_file.pdf", "rb") as f:
result = md.convert_stream(f, file_extension=".pdf")
# Process in chunks or save directly
with open("output.md", "w") as out:
out.write(result.text_content)
4. Optimize for Token Efficiency
Markdown output is already token-efficient, but you can:
- Remove excessive whitespace
- Consolidate similar sections
- Strip metadata if not needed
from markitdown import MarkItDown
import re
md = MarkItDown()
result = md.convert("document.pdf")
# Clean up extra whitespace
clean_text = re.sub(r'\n{3,}', '\n\n', result.text_content)
clean_text = clean_text.strip()
print(clean_text)
Integration with Scientific Workflows
Convert Literature for Review
from markitdown import MarkItDown
from pathlib import Path
md = MarkItDown()
# Convert all papers in literature folder
papers_dir = Path("literature/pdfs")
output_dir = Path("literature/markdown")
output_dir.mkdir(exist_ok=True)
for paper in papers_dir.glob("*.pdf"):
result = md.convert(str(paper))
# Save with metadata
output_file = output_dir / f"{paper.stem}.md"
content = f"# {paper.stem}\n\n"
content += f"**Source**: {paper.name}\n\n"
content += "---\n\n"
content += result.text_content
output_file.write_text(content)
# For AI-enhanced conversion with figures
from openai import OpenAI
client = OpenAI(
api_key="your-openrouter-api-key",
base_url="https://openrouter.ai/api/v1"
)
md_ai = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5",
llm_prompt="Describe scientific figures with technical precision"
)
Extract Tables for Analysis
from markitdown import MarkItDown
import re
md = MarkItDown()
result = md.convert("data_tables.xlsx")
# Markdown tables can be parsed or used directly
print(result.text_content)
Troubleshooting
Common Issues
Missing dependencies: Install feature-specific packages
pip install 'markitdown[pdf]' # For PDF supportBinary file errors: Ensure files are opened in binary mode
with open("file.pdf", "rb") as f: # Note the "rb" result = md.convert_stream(f, file_extension=".pdf")OCR not working: Install tesseract
# macOS brew install tesseract # Ubuntu sudo apt-get install tesseract-ocr
Performance Considerations
- PDF files: Large PDFs may take time; consider page ranges if supported
- Image OCR: OCR processing is CPU-intensive
- Audio transcription: Requires additional compute resources
- AI image descriptions: Requires API calls (costs may apply)
Next Steps
- See
references/api_reference.mdfor complete API documentation - Check
references/file_formats.mdfor format-specific details - Review
scripts/batch_convert.pyfor automation examples - Explore
scripts/convert_with_ai.pyfor AI-enhanced conversions
Resources
- MarkItDown GitHub: https://github.com/microsoft/markitdown
- PyPI: https://pypi.org/project/markitdown/
- OpenRouter: https://openrouter.ai (for AI-enhanced conversions)
- OpenRouter API Keys: https://openrouter.ai/keys
- OpenRouter Models: https://openrouter.ai/models
- MCP Server: markitdown-mcp (for Claude Desktop integration)
- Plugin Development: See
packages/markitdown-sample-plugin