| name | scientific-schematics |
| description | Create publication-quality scientific diagrams, flowcharts, and schematics using Python (graphviz, matplotlib, schemdraw, networkx). Specialized in neural network architectures, system diagrams, and flowcharts. Generates SVG/EPS in figures/ folder with automated quality verification. |
Scientific Schematics and Diagrams
Overview
Scientific schematics and diagrams transform complex concepts into clear visual representations for publication. Generate neural network architectures, flowcharts, circuit diagrams, biological pathways, and system diagrams using best-in-class Python libraries. All diagrams are created as SVG/EPS files, stored in the figures/ subfolder, and referenced in papers/posters - never embedded directly in LaTeX.
Zero-Shot Diagram Generation Workflow
Standard workflow for ALL diagrams:
- Analyze requirements - Identify diagram type and components
- Choose optimal library - Select best tool for the specific diagram type
- Generate vector graphic - Create SVG/EPS with proper spacing and layout
- Store in figures/ - Save to
figures/subfolder with descriptive name - Run quality checks - Verify no overlaps, good contrast, proper resolution
- Reference in document - Use
\includegraphics{figures/diagram_name.pdf}in LaTeX
Key principle: Generate standalone vector graphics first, then integrate into documents.
When to Use This Skill
This skill should be used when:
- Creating neural network architecture diagrams (Transformers, CNNs, RNNs, etc.)
- Illustrating system architectures and data flow diagrams
- Drawing methodology flowcharts for study design (CONSORT, PRISMA)
- Visualizing algorithm workflows and processing pipelines
- Creating circuit diagrams and electrical schematics
- Depicting biological pathways and molecular interactions
- Generating network topologies and hierarchical structures
- Illustrating conceptual frameworks and theoretical models
- Designing block diagrams for technical papers
Best Libraries by Diagram Type
Choose the optimal library for your specific diagram type:
Neural Network Architectures (Transformers, CNNs, etc.)
Best library: graphviz via Python's pygraphviz or pydot
- Excellent automatic layout algorithms
- Clean, professional appearance
- Perfect for layer stacks and connections
- Handles complex cross-connections well
Alternative: Custom matplotlib with careful positioning
- More control over exact placement
- Better for highly customized designs
- Requires more manual positioning
Flowcharts and Process Diagrams
Best library: graphviz with dot or flowchart layout
- Automatic optimal positioning
- Standard flowchart shapes
- Clean arrow routing
- Minimal overlap issues
Alternative: diagrams library (for cloud/system architecture style)
Circuit Diagrams
Best library: schemdraw
- Purpose-built for electrical circuits
- Extensive component library
- Automatic wire routing
- Professional engineering standard output
Biological Pathways
Best library: networkx with custom rendering
- Graph-based pathway representation
- Algorithm-driven layout
- Flexible node/edge styling
Block Diagrams and System Architecture
Best library: graphviz or diagrams
- Clean hierarchical layouts
- Automatic spacing
- Professional appearance
Zero-Shot Examples for Common Diagram Types
Example 1: Transformer Architecture (Neural Network)
Creating a Transformer encoder-decoder diagram like in "Attention Is All You Need":
import graphviz
from pathlib import Path
def create_transformer_diagram(output_dir='figures'):
"""
Create a Transformer architecture diagram.
Zero-shot generation with automatic layout.
"""
Path(output_dir).mkdir(exist_ok=True)
# Create directed graph with TB (top-to-bottom) layout
dot = graphviz.Digraph(
'transformer',
format='pdf',
graph_attr={
'rankdir': 'BT', # Bottom to top (like the original paper)
'splines': 'ortho', # Orthogonal edges
'nodesep': '0.5',
'ranksep': '0.8',
'bgcolor': 'white',
'dpi': '300'
},
node_attr={
'shape': 'box',
'style': 'rounded,filled',
'fillcolor': 'lightgray',
'fontname': 'Arial',
'fontsize': '11',
'width': '2.5',
'height': '0.5'
},
edge_attr={
'color': 'black',
'penwidth': '1.5'
}
)
# ENCODER STACK (left side)
with dot.subgraph(name='cluster_encoder') as enc:
enc.attr(label='Encoder', fontsize='14', fontname='Arial-Bold')
enc.attr(style='rounded', color='blue', penwidth='2')
# Encoder layers (bottom to top)
enc.node('enc_input_emb', 'Input Embedding', fillcolor='#E8F4F8')
enc.node('enc_pos', 'Positional Encoding', fillcolor='#E8F4F8')
enc.node('enc_mha', 'Multi-Head\nAttention', fillcolor='#B3D9E6')
enc.node('enc_an1', 'Add & Norm', fillcolor='#CCE5FF')
enc.node('enc_ff', 'Feed Forward', fillcolor='#B3D9E6')
enc.node('enc_an2', 'Add & Norm', fillcolor='#CCE5FF')
# Encoder flow
enc.edge('enc_input_emb', 'enc_pos')
enc.edge('enc_pos', 'enc_mha')
enc.edge('enc_mha', 'enc_an1')
enc.edge('enc_an1', 'enc_ff')
enc.edge('enc_ff', 'enc_an2')
# DECODER STACK (right side)
with dot.subgraph(name='cluster_decoder') as dec:
dec.attr(label='Decoder', fontsize='14', fontname='Arial-Bold')
dec.attr(style='rounded', color='red', penwidth='2')
# Decoder layers (bottom to top)
dec.node('dec_output_emb', 'Output Embedding', fillcolor='#FFE8E8')
dec.node('dec_pos', 'Positional Encoding', fillcolor='#FFE8E8')
dec.node('dec_mmha', 'Masked Self-\nAttention', fillcolor='#FFB3B3')
dec.node('dec_an1', 'Add & Norm', fillcolor='#FFCCCC')
dec.node('dec_cross', 'Cross-Attention', fillcolor='#FFB3B3')
dec.node('dec_an2', 'Add & Norm', fillcolor='#FFCCCC')
dec.node('dec_ff', 'Feed Forward', fillcolor='#FFB3B3')
dec.node('dec_an3', 'Add & Norm', fillcolor='#FFCCCC')
dec.node('dec_linear', 'Linear & Softmax', fillcolor='#FF9999')
dec.node('dec_output', 'Output\nProbabilities', fillcolor='#FFE8E8')
# Decoder flow
dec.edge('dec_output_emb', 'dec_pos')
dec.edge('dec_pos', 'dec_mmha')
dec.edge('dec_mmha', 'dec_an1')
dec.edge('dec_an1', 'dec_cross')
dec.edge('dec_cross', 'dec_an2')
dec.edge('dec_an2', 'dec_ff')
dec.edge('dec_ff', 'dec_an3')
dec.edge('dec_an3', 'dec_linear')
dec.edge('dec_linear', 'dec_output')
# Cross-attention connection (encoder to decoder)
dot.edge('enc_an2', 'dec_cross',
style='dashed',
color='purple',
label=' context ',
fontsize='9')
# Input and output labels
dot.node('input_seq', 'Input Sequence',
shape='ellipse', fillcolor='lightgreen')
dot.node('target_seq', 'Target Sequence',
shape='ellipse', fillcolor='lightgreen')
dot.edge('input_seq', 'enc_input_emb')
dot.edge('target_seq', 'dec_output_emb')
# Render to files
output_path = f'{output_dir}/transformer_architecture'
dot.render(output_path, cleanup=True)
# Also save as SVG and EPS
dot.format = 'svg'
dot.render(output_path, cleanup=True)
dot.format = 'eps'
dot.render(output_path, cleanup=True)
print(f"✓ Transformer diagram created:")
print(f" - {output_path}.pdf")
print(f" - {output_path}.svg")
print(f" - {output_path}.eps")
return f"{output_path}.pdf"
# Usage
if __name__ == '__main__':
diagram_path = create_transformer_diagram('figures')
# Run quality checks
from quality_checker import run_quality_checks
run_quality_checks(diagram_path.replace('.pdf', '.png'))
LaTeX integration:
\begin{figure}[htbp]
\centering
\includegraphics[width=0.9\textwidth]{figures/transformer_architecture.pdf}
\caption{Transformer encoder-decoder architecture showing multi-head attention,
feed-forward layers, and cross-attention mechanism.}
\label{fig:transformer}
\end{figure}
Example 2: Simple Flowchart (CONSORT-style)
import graphviz
from pathlib import Path
def create_consort_flowchart(output_dir='figures'):
"""Create a CONSORT participant flow diagram."""
Path(output_dir).mkdir(exist_ok=True)
dot = graphviz.Digraph(
'consort',
format='pdf',
graph_attr={
'rankdir': 'TB',
'splines': 'ortho',
'nodesep': '0.6',
'ranksep': '0.8',
'bgcolor': 'white'
},
node_attr={
'shape': 'box',
'style': 'rounded,filled',
'fillcolor': '#E8F4F8',
'fontname': 'Arial',
'fontsize': '10',
'width': '3',
'height': '0.6'
}
)
# Enrollment
dot.node('assessed', 'Assessed for eligibility\n(n=500)')
dot.node('excluded', 'Excluded (n=150)\n• Age < 18: n=80\n• Declined: n=50\n• Other: n=20')
dot.node('randomized', 'Randomized\n(n=350)')
# Allocation
dot.node('treatment', 'Allocated to treatment\n(n=175)', fillcolor='#C8E6C9')
dot.node('control', 'Allocated to control\n(n=175)', fillcolor='#FFECB3')
# Follow-up
dot.node('treat_lost', 'Lost to follow-up (n=15)', fillcolor='#FFCDD2')
dot.node('ctrl_lost', 'Lost to follow-up (n=10)', fillcolor='#FFCDD2')
# Analysis
dot.node('treat_analyzed', 'Analyzed (n=160)', fillcolor='#C8E6C9')
dot.node('ctrl_analyzed', 'Analyzed (n=165)', fillcolor='#FFECB3')
# Connect nodes
dot.edge('assessed', 'excluded')
dot.edge('assessed', 'randomized')
dot.edge('randomized', 'treatment')
dot.edge('randomized', 'control')
dot.edge('treatment', 'treat_lost')
dot.edge('treatment', 'treat_analyzed')
dot.edge('control', 'ctrl_lost')
dot.edge('control', 'ctrl_analyzed')
# Render
output_path = f'{output_dir}/consort_flowchart'
dot.render(output_path, cleanup=True)
print(f"✓ CONSORT flowchart created: {output_path}.pdf")
return f"{output_path}.pdf"
Example 3: CNN Architecture
def create_cnn_architecture(output_dir='figures'):
"""Create a CNN architecture diagram."""
dot = graphviz.Digraph(
'cnn',
format='pdf',
graph_attr={'rankdir': 'LR', 'bgcolor': 'white'}
)
# Define layers
layers = [
('input', 'Input\n32×32×3', '#FFE8E8'),
('conv1', 'Conv 3×3\n32 filters', '#B3D9E6'),
('pool1', 'MaxPool\n2×2', '#FFE5B3'),
('conv2', 'Conv 3×3\n64 filters', '#B3D9E6'),
('pool2', 'MaxPool\n2×2', '#FFE5B3'),
('flatten', 'Flatten', '#D4E8D4'),
('fc1', 'FC 128', '#C8B3E6'),
('fc2', 'FC 10', '#C8B3E6'),
('softmax', 'Softmax', '#FFC8C8')
]
# Create nodes
for node_id, label, color in layers:
dot.node(node_id, label,
shape='box', style='rounded,filled',
fillcolor=color, fontname='Arial')
# Connect layers
for i in range(len(layers) - 1):
dot.edge(layers[i][0], layers[i+1][0])
output_path = f'{output_dir}/cnn_architecture'
dot.render(output_path, cleanup=True)
print(f"✓ CNN diagram created: {output_path}.pdf")
return f"{output_path}.pdf"
Core Capabilities
1. Diagram Types Supported
Neural Network Architectures
- Transformer encoder-decoder models
- Convolutional Neural Networks (CNNs)
- Recurrent networks (LSTM, GRU)
- Attention mechanisms and variants
- Custom deep learning architectures
Methodology Flowcharts
- CONSORT participant flow diagrams
- PRISMA systematic review flows
- Data processing pipelines
- Algorithm workflows
- Subject enrollment flows
Circuit Diagrams
- Analog and digital electronic circuits
- Signal processing block diagrams
- Control system diagrams
Biological Diagrams
- Signaling pathways
- Metabolic pathway diagrams
- Gene regulatory networks
- Protein interaction networks
System Architecture Diagrams
- Software architecture and components
- Data flow diagrams
- Network topology diagrams
- Hierarchical organization charts
Required Libraries and Installation
Primary Library: Graphviz (Recommended for 90% of diagrams)
Graphviz is the best tool for most scientific diagrams due to automatic layout, clean rendering, and zero-overlap guarantee.
Installation:
# Install Graphviz binary (required)
# macOS
brew install graphviz
# Ubuntu/Debian
sudo apt-get install graphviz
# Install Python bindings
pip install graphviz
Why Graphviz is optimal:
- ✓ Automatic optimal layout (no manual positioning needed)
- ✓ Zero overlaps guaranteed by layout algorithms
- ✓ Professional appearance out of the box
- ✓ Supports complex hierarchies and cross-connections
- ✓ Native SVG, PDF, EPS output
- ✓ Minimal code for maximum quality
Specialized Libraries
Schemdraw - Circuit diagrams only
pip install schemdraw
NetworkX - Complex network analysis + visualization
pip install networkx matplotlib
Matplotlib - Custom manual diagrams (when you need exact control)
pip install matplotlib
Quick Start Guide for Zero-Shot Diagram Creation
Follow this systematic approach for any diagram type:
Step 1: Identify Diagram Structure
Ask yourself:
- Is it a hierarchy? → Use
rankdir='TB'or'BT'(top-to-bottom or bottom-to-top) - Is it a sequence? → Use
rankdir='LR'(left-to-right) - Does it have parallel branches? → Use subgraphs/clusters
- Does it have cross-connections? → Graphviz handles this automatically
Step 2: Set Up Base Template
Start with this template and customize:
import graphviz
from pathlib import Path
def create_diagram(output_dir='figures', diagram_name='my_diagram'):
"""Universal diagram creation template."""
Path(output_dir).mkdir(exist_ok=True, parents=True)
dot = graphviz.Digraph(
name=diagram_name,
format='pdf',
graph_attr={
'rankdir': 'TB', # TB, BT, LR, or RL
'splines': 'ortho', # ortho (straight) or curved
'nodesep': '0.6', # horizontal spacing
'ranksep': '0.8', # vertical spacing
'bgcolor': 'white',
'dpi': '300'
},
node_attr={
'shape': 'box', # box, ellipse, diamond, etc.
'style': 'rounded,filled',
'fillcolor': 'lightgray',
'fontname': 'Arial',
'fontsize': '11',
'margin': '0.2',
'width': '2', # minimum width
'height': '0.5' # minimum height
},
edge_attr={
'color': 'black',
'penwidth': '1.5',
'arrowsize': '0.8'
}
)
# Add your nodes and edges here
dot.node('node1', 'Label 1')
dot.node('node2', 'Label 2')
dot.edge('node1', 'node2')
# Render to multiple formats
output_path = f'{output_dir}/{diagram_name}'
dot.render(output_path, cleanup=True) # PDF
dot.format = 'svg'
dot.render(output_path, cleanup=True) # SVG
dot.format = 'eps'
dot.render(output_path, cleanup=True) # EPS
print(f"✓ Diagram saved: {output_path}.{{pdf,svg,eps}}")
return f"{output_path}.pdf"
Step 3: Add Nodes with Clear Labels
Best practices:
- Use descriptive node IDs:
'encoder_layer1'not'n1' - Use
\nfor multi-line labels - Use fill colors to group related components
- Keep labels concise (3-5 words max per line)
# Good node definitions
dot.node('input_layer', 'Input Layer\n(512 dims)', fillcolor='#E8F4F8')
dot.node('attention', 'Multi-Head\nAttention', fillcolor='#B3D9E6')
dot.node('output', 'Output', fillcolor='#C8E6C9')
Step 4: Connect Nodes with Edges
Edge types:
# Standard arrow
dot.edge('node1', 'node2')
# Dashed line (for information flow)
dot.edge('encoder', 'decoder', style='dashed')
# Bidirectional
dot.edge('node1', 'node2', dir='both')
# With label
dot.edge('layer1', 'layer2', label=' ReLU ')
# Different color
dot.edge('input', 'output', color='red', penwidth='2')
Step 5: Use Subgraphs for Grouping
For parallel structures (like Encoder/Decoder):
# Encoder cluster
with dot.subgraph(name='cluster_encoder') as enc:
enc.attr(label='Encoder', style='rounded', color='blue')
enc.node('enc1', 'Encoder Layer 1')
enc.node('enc2', 'Encoder Layer 2')
enc.edge('enc1', 'enc2')
# Decoder cluster
with dot.subgraph(name='cluster_decoder') as dec:
dec.attr(label='Decoder', style='rounded', color='red')
dec.node('dec1', 'Decoder Layer 1')
dec.node('dec2', 'Decoder Layer 2')
dec.edge('dec1', 'dec2')
# Cross-connection between clusters
dot.edge('enc2', 'dec1', style='dashed', color='purple')
Step 6: Render and Verify
# Always render to PDF (for LaTeX) and SVG (for web/slides)
output_path = f'{output_dir}/{diagram_name}'
# PDF for papers
dot.format = 'pdf'
dot.render(output_path, cleanup=True)
# SVG for posters/slides
dot.format = 'svg'
dot.render(output_path, cleanup=True)
# EPS for some journals
dot.format = 'eps'
dot.render(output_path, cleanup=True)
Common Graphviz Attributes Quick Reference
Graph Attributes (overall layout)
graph_attr={
'rankdir': 'TB', # Direction: TB, BT, LR, RL
'splines': 'ortho', # Edge style: ortho, curved, line, polyline
'nodesep': '0.5', # Space between nodes (inches)
'ranksep': '0.8', # Space between ranks (inches)
'bgcolor': 'white', # Background color
'dpi': '300', # Resolution for raster output
'compound': 'true', # Allow edges between clusters
'concentrate': 'true' # Merge multiple edges
}
Node Attributes (boxes/shapes)
node_attr={
'shape': 'box', # box, ellipse, circle, diamond, plaintext
'style': 'rounded,filled', # rounded, filled, dashed, bold
'fillcolor': '#E8F4F8', # Fill color (hex or name)
'color': 'black', # Border color
'penwidth': '1.5', # Border width
'fontname': 'Arial', # Font family
'fontsize': '11', # Font size (points)
'fontcolor': 'black', # Text color
'width': '2', # Minimum width (inches)
'height': '0.5', # Minimum height (inches)
'margin': '0.2' # Internal padding
}
Edge Attributes (arrows/connections)
edge_attr={
'color': 'black', # Line color
'penwidth': '1.5', # Line width
'style': 'solid', # solid, dashed, dotted, bold
'arrowsize': '1.0', # Arrow head size
'dir': 'forward', # forward, back, both, none
'arrowhead': 'normal' # normal, vee, diamond, dot, none
}
Colorblind-Safe Palettes
Use these color sets to ensure accessibility:
Okabe-Ito Palette (8 colors)
OKABE_ITO = {
'orange': '#E69F00',
'sky_blue': '#56B4E9',
'green': '#009E73',
'yellow': '#F0E442',
'blue': '#0072B2',
'vermillion': '#D55E00',
'purple': '#CC79A7',
'black': '#000000'
}
Light Backgrounds (for filled nodes)
LIGHT_FILLS = {
'blue': '#E8F4F8',
'green': '#E8F5E9',
'orange': '#FFF3E0',
'purple': '#F3E5F5',
'red': '#FFEBEE',
'yellow': '#FFFDE7',
'gray': '#F5F5F5'
}
4. Publication Standards
All diagrams follow scientific publication best practices:
Vector Format Output
- PDF for LaTeX integration (preferred)
- SVG for web and presentations
- EPS for legacy publishing systems
- High-resolution PNG as fallback (300+ DPI)
Colorblind-Friendly Design
- Okabe-Ito palette for categorical elements
- Perceptually uniform colormaps for continuous data
- Redundant encoding (shapes + colors)
- Grayscale compatibility verification
Typography Standards
- Sans-serif fonts (Arial, Helvetica) for consistency
- Minimum 7-8 pt text at final print size
- Clear, readable labels with units
- Consistent notation throughout
Accessibility
- High contrast between elements
- Adequate line weights (0.5-1 pt minimum)
- Clear visual hierarchy
- Descriptive captions and alt text
For comprehensive publication guidelines, see references/best_practices.md.
Quick Start Examples
Example 1: Simple Flowchart in TikZ
\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{shapes.geometric, arrows.meta}
% Load colorblind-safe colors
\input{tikz_styles.tex}
\begin{document}
\begin{figure}[h]
\centering
\begin{tikzpicture}[
node distance=2cm,
process/.style={rectangle, rounded corners, draw=black, thick,
fill=okabe-blue!20, minimum width=3cm, minimum height=1cm},
decision/.style={diamond, draw=black, thick, fill=okabe-orange!20,
minimum width=2cm, aspect=2},
arrow/.style={-Stealth, thick}
]
% Nodes
\node (start) [process] {Screen Participants\\(n=500)};
\node (exclude) [process, below of=start] {Exclude (n=150)\\Age $<$ 18 years};
\node (randomize) [process, below of=exclude] {Randomize (n=350)};
\node (treatment) [process, below left=1.5cm and 2cm of randomize]
{Treatment Group\\(n=175)};
\node (control) [process, below right=1.5cm and 2cm of randomize]
{Control Group\\(n=175)};
\node (analyze) [process, below=3cm of randomize] {Analyze Data};
% Arrows
\draw [arrow] (start) -- (exclude);
\draw [arrow] (exclude) -- (randomize);
\draw [arrow] (randomize) -| (treatment);
\draw [arrow] (randomize) -| (control);
\draw [arrow] (treatment) |- (analyze);
\draw [arrow] (control) |- (analyze);
\end{tikzpicture}
\caption{Study participant flow diagram following CONSORT guidelines.}
\label{fig:consort}
\end{figure}
\end{document}
Example 2: Circuit Diagram with Schemdraw
import schemdraw
import schemdraw.elements as elm
# Create drawing with colorblind-safe colors
d = schemdraw.Drawing()
# Voltage source
d += elm.SourceV().label('$V_s$')
# Resistors in series
d += elm.Resistor().right().label('$R_1$\n1kΩ')
d += elm.Resistor().label('$R_2$\n2kΩ')
# Capacitor
d += elm.Capacitor().down().label('$C_1$\n10µF')
# Close the circuit
d += elm.Line().left().tox(d.elements[0].start)
# Add ground
d += elm.Ground()
# Save as vector graphics
d.save('circuit_diagram.svg')
d.save('circuit_diagram.pdf')
Example 3: Biological Pathway with Python
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib.patches import FancyBboxPatch, FancyArrowPatch
# Okabe-Ito colorblind-safe palette
colors = {
'protein': '#56B4E9', # Blue
'gene': '#009E73', # Green
'process': '#F0E442', # Yellow
'inhibition': '#D55E00' # Orange
}
fig, ax = plt.subplots(figsize=(8, 6))
# Define proteins as rounded rectangles
proteins = [
('Receptor', 1, 5),
('Kinase A', 3, 5),
('Kinase B', 5, 5),
('TF', 7, 5),
('Gene', 7, 3)
]
for name, x, y in proteins:
color = colors['gene'] if name == 'Gene' else colors['protein']
box = FancyBboxPatch((x-0.4, y-0.3), 0.8, 0.6,
boxstyle="round,pad=0.1",
facecolor=color, edgecolor='black', linewidth=2)
ax.add_patch(box)
ax.text(x, y, name, ha='center', va='center', fontsize=10, fontweight='bold')
# Add activation arrows
arrows = [
(1.5, 5, 2.5, 5, 'black'), # Receptor -> Kinase A
(3.5, 5, 4.5, 5, 'black'), # Kinase A -> Kinase B
(5.5, 5, 6.5, 5, 'black'), # Kinase B -> TF
(7, 4.7, 7, 3.6, 'black') # TF -> Gene
]
for x1, y1, x2, y2, color in arrows:
arrow = FancyArrowPatch((x1, y1), (x2, y2),
arrowstyle='->', mutation_scale=20,
linewidth=2, color=color)
ax.add_patch(arrow)
# Configure axes
ax.set_xlim(0, 8.5)
ax.set_ylim(2, 6)
ax.set_aspect('equal')
ax.axis('off')
plt.tight_layout()
plt.savefig('signaling_pathway.pdf', bbox_inches='tight', dpi=300)
plt.savefig('signaling_pathway.png', bbox_inches='tight', dpi=300)
Production Workflow (From Concept to Publication)
Follow this systematic workflow for all diagrams:
Phase 1: Analysis (2 minutes)
Identify diagram type - What are you visualizing?
- Neural network architecture? → Use graphviz
- Flowchart (CONSORT, PRISMA)? → Use graphviz
- Circuit diagram? → Use schemdraw
- Complex network? → Use networkx + graphviz
Determine layout direction
- Vertical flow (top-to-bottom)? →
rankdir='TB' - Bottom-up (like Transformer)? →
rankdir='BT' - Left-to-right sequence? →
rankdir='LR' - Right-to-left? →
rankdir='RL'
- Vertical flow (top-to-bottom)? →
Identify groupings
- Parallel structures (encoder/decoder)? → Use clusters/subgraphs
- Sequential only? → Simple node chain
- Cross-connections? → Graphviz handles automatically
Phase 2: Implementation (10-15 minutes)
Standard procedure for 95% of diagrams:
import graphviz
from pathlib import Path
# 1. Set up output directory
output_dir = 'figures'
Path(output_dir).mkdir(exist_ok=True, parents=True)
# 2. Create diagram with base template
dot = graphviz.Digraph(
'my_diagram',
format='pdf',
graph_attr={
'rankdir': 'TB', # Adjust based on Phase 1
'splines': 'ortho', # Clean orthogonal edges
'nodesep': '0.6', # Good default spacing
'ranksep': '0.8',
'bgcolor': 'white',
'dpi': '300'
},
node_attr={
'shape': 'box',
'style': 'rounded,filled',
'fillcolor': 'lightgray',
'fontname': 'Arial',
'fontsize': '11'
},
edge_attr={'color': 'black', 'penwidth': '1.5'}
)
# 3. Add nodes (with descriptive IDs and clear labels)
dot.node('input', 'Input Layer', fillcolor='#E8F4F8')
dot.node('hidden', 'Hidden Layer', fillcolor='#B3D9E6')
dot.node('output', 'Output Layer', fillcolor='#C8E6C9')
# 4. Add edges
dot.edge('input', 'hidden')
dot.edge('hidden', 'output')
# 5. Render to figures/ folder
output_path = f'{output_dir}/my_diagram'
dot.render(output_path, cleanup=True) # Creates PDF
dot.format = 'svg'
dot.render(output_path, cleanup=True) # Creates SVG
dot.format = 'eps'
dot.render(output_path, cleanup=True) # Creates EPS
print(f"✓ Saved to: {output_path}.{{pdf,svg,eps}}")
Phase 3: Quality Verification (5 minutes)
Automatic checks:
# Convert PDF to PNG for quality checking
from pdf2image import convert_from_path
pages = convert_from_path(f'{output_path}.pdf', dpi=300)
pages[0].save(f'{output_path}.png')
# Run quality checks
from quality_checker import run_quality_checks
report = run_quality_checks(f'{output_path}.png')
if report['overall_status'] != 'PASS':
print("⚠️ Issues detected - review quality_reports/")
# Adjust spacing: increase nodesep or ranksep
# Adjust colors: check accessibility report
else:
print("✓ Quality checks passed!")
Manual verification:
- Open PDF in viewer - check for overlaps
- Verify text is readable (zoom to 100%)
- Check alignment and spacing looks professional
- Ensure colors are distinguishable
Phase 4: LaTeX Integration (2 minutes)
In your LaTeX document:
% In preamble
\usepackage{graphicx}
% In document
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{figures/my_diagram.pdf}
\caption{Clear, descriptive caption explaining all components and abbreviations.
Define any non-standard notation used in the diagram.}
\label{fig:my_diagram}
\end{figure}
% Reference in text
As shown in Figure~\ref{fig:my_diagram}, the architecture consists of...
For posters (beamer):
\begin{frame}{Architecture}
\begin{center}
\includegraphics[width=0.9\textwidth]{figures/my_diagram.pdf}
\end{center}
\end{frame}
Phase 5: Version Control (1 minute)
Always commit:
- Python source code (
create_my_diagram.py) - Generated outputs (
figures/my_diagram.{pdf,svg,eps}) - Quality reports (
my_diagram_quality_reports/)
git add create_my_diagram.py
git add figures/my_diagram.*
git add my_diagram_quality_reports/
git commit -m "Add architecture diagram with quality verification"
Troubleshooting Common Issues
Graphviz-Specific Problems
Problem: Nodes overlap or are too close
# Solution: Increase spacing
graph_attr={
'nodesep': '1.0', # Increase from default 0.6
'ranksep': '1.2' # Increase from default 0.8
}
Problem: Edges cross in confusing ways
# Solution 1: Use orthogonal splines
graph_attr={'splines': 'ortho'}
# Solution 2: Adjust rank direction
graph_attr={'rankdir': 'LR'} # Try different directions
Problem: Labels are cut off or too small
# Solution: Adjust node size and font
node_attr={
'fontsize': '12', # Increase from 11
'margin': '0.3', # More internal padding
'width': '2.5', # Wider boxes
'height': '0.6' # Taller boxes
}
Problem: Clusters/subgraphs not appearing
# Solution: Cluster names MUST start with 'cluster_'
with dot.subgraph(name='cluster_encoder') as enc: # ✓ Correct
enc.attr(label='Encoder')
with dot.subgraph(name='encoder') as enc: # ✗ Won't show as cluster
enc.attr(label='Encoder')
Problem: Cross-cluster edges not working
# Solution: Enable compound edges
dot.attr(compound='true')
# Then use lhead/ltail for cluster connections
dot.edge('node1', 'node2', lhead='cluster_decoder')
Problem: Graphviz not found error
# Solution: Install graphviz binary (not just Python package)
# macOS
brew install graphviz
# Ubuntu
sudo apt-get install graphviz
# Then install Python bindings
pip install graphviz
Visual Quality Issues
Problem: Colors not colorblind-safe
# Solution: Use Okabe-Ito palette
COLORS = {
'blue': '#56B4E9',
'green': '#009E73',
'orange': '#E69F00',
'purple': '#CC79A7'
}
dot.node('n1', 'Node', fillcolor=COLORS['blue'])
Problem: Text too small when printed
# Solution: Increase font size and DPI
node_attr={'fontsize': '12'} # Minimum 11-12 for print
graph_attr={'dpi': '300'} # Publication quality
Problem: PDF too large
# Solution 1: Use simpler edge routing
graph_attr={'splines': 'line'} # Simpler than 'ortho'
# Solution 2: Reduce DPI for drafts
graph_attr={'dpi': '150'} # For drafts only
Workflow Issues
Problem: Need to regenerate diagram after changes
# Solution: Make diagram generation a function
def create_diagram(params):
# ... diagram code ...
return output_path
# Easy to regenerate with different parameters
create_diagram({'nodesep': '0.8', 'ranksep': '1.0'})
Problem: Diagram doesn't match paper figures style
# Solution: Create a reusable style configuration
PAPER_STYLE = {
'graph_attr': {
'rankdir': 'TB',
'bgcolor': 'white',
'dpi': '300'
},
'node_attr': {
'fontname': 'Arial',
'fontsize': '11',
'style': 'rounded,filled',
'fillcolor': '#E8F4F8'
},
'edge_attr': {
'color': 'black',
'penwidth': '1.5'
}
}
# Use for all diagrams
dot = graphviz.Digraph(**PAPER_STYLE)
Visual Verification and Quality Control
All diagrams undergo automated visual quality checks to prevent overlaps, ensure readability, and verify accessibility. This multi-stage verification process uses computer vision techniques to detect common issues.
Stage 1: Overlap Detection
Automatically detect overlapping elements that reduce clarity:
import numpy as np
from PIL import Image
import json
from pathlib import Path
def detect_overlaps(image_path, threshold=0.95):
"""
Detect potential overlapping regions in a diagram.
Args:
image_path: Path to the rendered diagram (PNG/PDF)
threshold: Similarity threshold for detecting overlaps (0-1)
Returns:
dict: Overlap report with locations and severity
"""
# Load image
img = Image.open(image_path).convert('RGB')
img_array = np.array(img)
# Detect dense regions (potential overlaps)
gray = np.mean(img_array, axis=2)
# Edge detection to find boundaries
from scipy.ndimage import sobel
edges_x = sobel(gray, axis=0)
edges_y = sobel(gray, axis=1)
edge_magnitude = np.hypot(edges_x, edges_y)
# Find regions with high edge density (overlaps)
from scipy.ndimage import label, find_objects
binary_edges = edge_magnitude > np.percentile(edge_magnitude, 85)
labeled_regions, num_features = label(binary_edges)
overlaps = []
slices = find_objects(labeled_regions)
for i, slice_obj in enumerate(slices):
if slice_obj is not None:
region = edge_magnitude[slice_obj]
density = np.mean(region)
# High density suggests potential overlap
if density > threshold * np.max(edge_magnitude):
y_center = (slice_obj[0].start + slice_obj[0].stop) // 2
x_center = (slice_obj[1].start + slice_obj[1].stop) // 2
overlaps.append({
'region_id': i + 1,
'position': (x_center, y_center),
'density': float(density),
'severity': 'high' if density > 0.98 * np.max(edge_magnitude) else 'medium'
})
report = {
'image': str(image_path),
'overlaps_detected': len(overlaps),
'overlap_regions': overlaps,
'status': 'PASS' if len(overlaps) == 0 else 'WARNING'
}
return report
def save_overlap_report(report, output_path='overlap_report.json'):
"""Save overlap detection report to JSON."""
with open(output_path, 'w') as f:
json.dump(report, indent=2, fp=f)
print(f"Overlap Report: {report['status']}")
print(f" - Overlaps detected: {report['overlaps_detected']}")
if report['overlap_regions']:
print(" - Regions requiring review:")
for region in report['overlap_regions']:
print(f" * Region {region['region_id']}: "
f"Position {region['position']}, Severity: {region['severity']}")
Stage 2: Contrast and Accessibility Verification
Ensure diagrams meet accessibility standards for colorblind readers:
def verify_accessibility(image_path):
"""
Verify diagram meets accessibility standards.
Checks:
- Sufficient contrast ratios
- Grayscale readability
- Text size adequacy
"""
from PIL import ImageFilter, ImageStat
img = Image.open(image_path).convert('RGB')
# Test 1: Grayscale conversion
grayscale = img.convert('L')
gray_stat = ImageStat.Stat(grayscale)
# Calculate contrast (std dev of grayscale)
contrast = gray_stat.stddev[0]
min_contrast = 30 # Minimum standard deviation for good contrast
# Test 2: Color distribution
rgb_array = np.array(img)
unique_colors = len(np.unique(rgb_array.reshape(-1, 3), axis=0))
# Test 3: Simulate common color blindness (deuteranopia)
def simulate_colorblind(img_array):
# Simplified deuteranopia simulation
colorblind = img_array.copy().astype(float)
colorblind[:, :, 0] = 0.625 * img_array[:, :, 0] + 0.375 * img_array[:, :, 1]
colorblind[:, :, 1] = 0.7 * img_array[:, :, 1] + 0.3 * img_array[:, :, 0]
return colorblind.astype(np.uint8)
colorblind_img = simulate_colorblind(np.array(img))
cb_image = Image.fromarray(colorblind_img)
cb_gray = cb_image.convert('L')
cb_stat = ImageStat.Stat(cb_gray)
cb_contrast = cb_stat.stddev[0]
report = {
'image': str(image_path),
'checks': {
'grayscale_contrast': {
'value': contrast,
'threshold': min_contrast,
'status': 'PASS' if contrast >= min_contrast else 'FAIL'
},
'colorblind_contrast': {
'value': cb_contrast,
'threshold': min_contrast * 0.8,
'status': 'PASS' if cb_contrast >= min_contrast * 0.8 else 'FAIL'
},
'color_diversity': {
'unique_colors': unique_colors,
'status': 'INFO'
}
},
'overall_status': 'PASS' if (contrast >= min_contrast and
cb_contrast >= min_contrast * 0.8) else 'FAIL'
}
return report
def save_accessibility_report(report, output_path='accessibility_report.json'):
"""Save accessibility report to JSON."""
with open(output_path, 'w') as f:
json.dump(report, indent=2, fp=f)
print(f"Accessibility Report: {report['overall_status']}")
for check_name, check_data in report['checks'].items():
print(f" - {check_name}: {check_data['status']}")
if 'value' in check_data and 'threshold' in check_data:
print(f" Value: {check_data['value']:.2f}, Threshold: {check_data['threshold']:.2f}")
Stage 3: Text Size and Resolution Validation
Verify text is readable at publication size:
def validate_resolution(image_path, target_dpi=300, min_text_size_pt=7):
"""
Validate image resolution and estimated text size.
Args:
image_path: Path to diagram image
target_dpi: Target DPI for publication (default 300)
min_text_size_pt: Minimum acceptable text size in points
"""
from PIL import Image
import pytesseract
img = Image.open(image_path)
# Check DPI
dpi = img.info.get('dpi', (72, 72))
actual_dpi = dpi[0] if isinstance(dpi, tuple) else dpi
# Estimate text size (simplified - assumes text detection)
# For production, use OCR or PDF text extraction
width, height = img.size
dpi_ratio = actual_dpi / 72 # Convert to screen pixels
# Calculate physical size in inches
width_inches = width / actual_dpi if actual_dpi > 0 else width / 72
height_inches = height / actual_dpi if actual_dpi > 0 else height / 72
report = {
'image': str(image_path),
'resolution': {
'dpi': actual_dpi,
'target_dpi': target_dpi,
'status': 'PASS' if actual_dpi >= target_dpi else 'WARNING'
},
'dimensions': {
'pixels': {'width': width, 'height': height},
'inches': {'width': round(width_inches, 2),
'height': round(height_inches, 2)}
},
'recommendations': []
}
if actual_dpi < target_dpi:
report['recommendations'].append(
f"Increase resolution to {target_dpi} DPI for publication quality"
)
if width_inches > 7:
report['recommendations'].append(
"Image width exceeds typical single-column width (7 inches)"
)
return report
Stage 4: Comprehensive Quality Check Pipeline
Run all verification stages in sequence:
def run_quality_checks(image_path, output_dir='quality_reports'):
"""
Run comprehensive quality checks on diagram.
Args:
image_path: Path to diagram to verify
output_dir: Directory to save reports
Returns:
dict: Comprehensive quality report
"""
import os
from datetime import datetime
Path(output_dir).mkdir(exist_ok=True)
print(f"Running quality checks on: {image_path}")
print("=" * 60)
# Stage 1: Overlap Detection
print("\n[Stage 1/4] Detecting overlaps...")
overlap_report = detect_overlaps(image_path)
save_overlap_report(
overlap_report,
f"{output_dir}/overlap_report.json"
)
# Stage 2: Accessibility
print("\n[Stage 2/4] Verifying accessibility...")
accessibility_report = verify_accessibility(image_path)
save_accessibility_report(
accessibility_report,
f"{output_dir}/accessibility_report.json"
)
# Stage 3: Resolution
print("\n[Stage 3/4] Validating resolution...")
resolution_report = validate_resolution(image_path)
with open(f"{output_dir}/resolution_report.json", 'w') as f:
json.dump(resolution_report, f, indent=2)
# Stage 4: Generate visual report
print("\n[Stage 4/4] Generating visual report...")
create_visual_report(
image_path,
overlap_report,
accessibility_report,
f"{output_dir}/visual_report.png"
)
# Comprehensive summary
all_pass = (
overlap_report['status'] != 'FAIL' and
accessibility_report['overall_status'] != 'FAIL' and
resolution_report['resolution']['status'] != 'FAIL'
)
summary = {
'timestamp': datetime.now().isoformat(),
'image': str(image_path),
'overall_status': 'PASS' if all_pass else 'NEEDS REVIEW',
'stage_results': {
'overlap_detection': overlap_report['status'],
'accessibility': accessibility_report['overall_status'],
'resolution': resolution_report['resolution']['status']
},
'reports_saved_to': output_dir
}
with open(f"{output_dir}/summary.json", 'w') as f:
json.dump(summary, f, indent=2)
print("\n" + "=" * 60)
print(f"OVERALL STATUS: {summary['overall_status']}")
print(f"Reports saved to: {output_dir}/")
print("=" * 60)
return summary
def create_visual_report(image_path, overlap_report, accessibility_report, output_path):
"""Create visual report with annotations."""
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Load original image
img = Image.open(image_path)
# Panel 1: Original with overlap markers
axes[0].imshow(img)
axes[0].set_title('Overlap Detection', fontsize=12, fontweight='bold')
if overlap_report['overlap_regions']:
for region in overlap_report['overlap_regions']:
x, y = region['position']
color = 'red' if region['severity'] == 'high' else 'orange'
circle = Circle((x, y), 20, color=color, fill=False, linewidth=2)
axes[0].add_patch(circle)
axes[0].axis('off')
axes[0].text(0.02, 0.98, f"Status: {overlap_report['status']}",
transform=axes[0].transAxes, fontsize=10,
verticalalignment='top', bbox=dict(boxstyle='round',
facecolor='wheat', alpha=0.5))
# Panel 2: Grayscale version
gray_img = img.convert('L')
axes[1].imshow(gray_img, cmap='gray')
axes[1].set_title('Grayscale Preview', fontsize=12, fontweight='bold')
axes[1].axis('off')
gray_status = accessibility_report['checks']['grayscale_contrast']['status']
axes[1].text(0.02, 0.98, f"Status: {gray_status}",
transform=axes[1].transAxes, fontsize=10,
verticalalignment='top', bbox=dict(boxstyle='round',
facecolor='wheat', alpha=0.5))
# Panel 3: Colorblind simulation
img_array = np.array(img)
colorblind = img_array.copy().astype(float)
colorblind[:, :, 0] = 0.625 * img_array[:, :, 0] + 0.375 * img_array[:, :, 1]
colorblind[:, :, 1] = 0.7 * img_array[:, :, 1] + 0.3 * img_array[:, :, 0]
axes[2].imshow(colorblind.astype(np.uint8))
axes[2].set_title('Colorblind Simulation', fontsize=12, fontweight='bold')
axes[2].axis('off')
cb_status = accessibility_report['checks']['colorblind_contrast']['status']
axes[2].text(0.02, 0.98, f"Status: {cb_status}",
transform=axes[2].transAxes, fontsize=10,
verticalalignment='top', bbox=dict(boxstyle='round',
facecolor='wheat', alpha=0.5))
plt.tight_layout()
plt.savefig(output_path, dpi=150, bbox_inches='tight')
print(f"Visual report saved: {output_path}")
plt.close()
Usage Example: Complete Workflow with Verification
Here's how to create a diagram with full quality verification:
import matplotlib.pyplot as plt
from matplotlib.patches import FancyBboxPatch, FancyArrowPatch
# Step 1: Create diagram
def create_flowchart_with_verification(output_base='flowchart'):
"""Create flowchart with automated quality checks."""
# Okabe-Ito colorblind-safe palette
colors = {
'process': '#56B4E9', # Blue
'decision': '#E69F00', # Orange
'data': '#009E73', # Green
'terminal': '#CC79A7' # Purple
}
fig, ax = plt.subplots(figsize=(8, 10))
# Define flowchart elements with careful spacing
elements = [
('Start', 4, 9, 'terminal'),
('Input Data', 4, 7.5, 'data'),
('Process A', 4, 6, 'process'),
('Decision?', 4, 4.5, 'decision'),
('Process B1', 2, 3, 'process'),
('Process B2', 6, 3, 'process'),
('Output', 4, 1.5, 'data'),
('End', 4, 0, 'terminal')
]
# Draw boxes with adequate spacing
box_positions = {}
for label, x, y, element_type in elements:
color = colors[element_type]
width, height = (1.2, 0.6) if element_type != 'decision' else (1.5, 1.0)
box = FancyBboxPatch(
(x - width/2, y - height/2), width, height,
boxstyle="round,pad=0.1" if element_type != 'decision' else "round,pad=0.05",
facecolor=color, edgecolor='black', linewidth=2
)
ax.add_patch(box)
ax.text(x, y, label, ha='center', va='center',
fontsize=10, fontweight='bold')
box_positions[label] = (x, y)
# Draw arrows with proper spacing
arrows = [
('Start', 'Input Data'),
('Input Data', 'Process A'),
('Process A', 'Decision?'),
('Decision?', 'Process B1'),
('Decision?', 'Process B2'),
('Process B1', 'Output'),
('Process B2', 'Output'),
('Output', 'End')
]
for start, end in arrows:
x1, y1 = box_positions[start]
x2, y2 = box_positions[end]
# Calculate arrow start/end points to avoid overlap
if x1 == x2: # Vertical arrow
y1_adj = y1 - 0.3 if y2 < y1 else y1 + 0.3
y2_adj = y2 + 0.3 if y2 < y1 else y2 - 0.3
arrow = FancyArrowPatch(
(x1, y1_adj), (x2, y2_adj),
arrowstyle='->', mutation_scale=20, linewidth=2, color='black'
)
else: # Diagonal arrow
arrow = FancyArrowPatch(
(x1, y1 - 0.5), (x2, y2 + 0.3),
arrowstyle='->', mutation_scale=20, linewidth=2, color='black'
)
ax.add_patch(arrow)
ax.set_xlim(0, 8)
ax.set_ylim(-0.5, 9.5)
ax.set_aspect('equal')
ax.axis('off')
plt.tight_layout()
# Save in multiple formats
plt.savefig(f'{output_base}.pdf', bbox_inches='tight', dpi=300)
plt.savefig(f'{output_base}.png', bbox_inches='tight', dpi=300)
plt.savefig(f'{output_base}.svg', bbox_inches='tight')
print(f"Diagram saved: {output_base}.pdf/.png/.svg")
plt.close()
# Step 2: Run quality checks
print("\nRunning quality verification...")
quality_report = run_quality_checks(
f'{output_base}.png',
output_dir=f'{output_base}_quality_reports'
)
# Step 3: Review and iterate if needed
if quality_report['overall_status'] != 'PASS':
print("\n⚠️ Diagram needs review. Check quality reports for details.")
return False
else:
print("\n✓ Diagram passed all quality checks!")
return True
# Run complete workflow
if __name__ == '__main__':
success = create_flowchart_with_verification('my_flowchart')
Iterative Refinement Loop
For complex diagrams, use an iterative refinement process:
def iterative_diagram_refinement(create_function, max_iterations=3):
"""
Iteratively refine diagram until it passes quality checks.
Args:
create_function: Function that creates and saves diagram
max_iterations: Maximum refinement attempts
"""
for iteration in range(1, max_iterations + 1):
print(f"\n{'='*60}")
print(f"ITERATION {iteration}/{max_iterations}")
print(f"{'='*60}")
# Create diagram
diagram_path = create_function(iteration)
# Run checks
quality_report = run_quality_checks(
diagram_path,
output_dir=f'iteration_{iteration}_reports'
)
if quality_report['overall_status'] == 'PASS':
print(f"\n✓ Diagram approved after {iteration} iteration(s)")
return True
else:
print(f"\n⚠️ Issues found. Adjusting parameters for next iteration...")
# Here you would adjust spacing, colors, etc. based on reports
print(f"\n❌ Maximum iterations reached. Manual review required.")
return False
Common Use Cases
Use Case 1: CONSORT Participant Flow Diagram
Clinical trials require standardized participant flow diagrams. Use the flowchart template:
% Load template
\input{assets/flowchart_template.tex}
% Customize with your numbers
\begin{tikzpicture}[consort]
\node (assessed) [flowbox] {Assessed for eligibility (n=500)};
\node (excluded) [flowbox, below=of assessed] {Excluded (n=150)};
\node (reasons) [infobox, right=of excluded] {
\begin{tabular}{l}
Age $<$ 18: n=80 \\
Declined: n=50 \\
Other: n=20
\end{tabular}
};
% ... continue diagram
\end{tikzpicture}
See assets/flowchart_template.tex for complete template.
Use Case 2: Electronics Circuit Schematic
For electronics papers, use Schemdraw or CircuitikZ:
# Python with Schemdraw - see scripts/circuit_generator.py
from scripts.circuit_generator import create_circuit
circuit = create_circuit(
components=['voltage_source', 'resistor', 'capacitor', 'ground'],
values=['5V', '1kΩ', '10µF', None],
layout='series'
)
circuit.save('my_circuit.pdf')
Or use CircuitikZ in LaTeX - see assets/circuit_template.tex.
Use Case 3: Biological Signaling Pathway
Visualize molecular interactions and signaling cascades:
# Python script - see scripts/pathway_diagram.py
from scripts.pathway_diagram import PathwayGenerator
pathway = PathwayGenerator()
pathway.add_protein('EGFR', position=(1, 5))
pathway.add_protein('RAS', position=(3, 5))
pathway.add_protein('RAF', position=(5, 5))
pathway.add_activation('EGFR', 'RAS')
pathway.add_activation('RAS', 'RAF')
pathway.save('mapk_pathway.pdf')
Or create in TikZ - see assets/pathway_template.tex.
Use Case 4: System Architecture Diagram
Illustrate software/hardware components and relationships:
% Use block diagram template
\input{assets/block_diagram_template.tex}
\begin{tikzpicture}[architecture]
\node (sensor) [component] {Sensor};
\node (adc) [component, right=of sensor] {ADC};
\node (micro) [component, right=of adc] {Microcontroller};
\node (wifi) [component, above right=of micro] {WiFi Module};
\node (display) [component, below right=of micro] {Display};
\draw [dataflow] (sensor) -- node[above] {Analog} (adc);
\draw [dataflow] (adc) -- node[above] {Digital} (micro);
\draw [dataflow] (micro) -- (wifi);
\draw [dataflow] (micro) -- (display);
\end{tikzpicture}
See assets/block_diagram_template.tex for complete template.
Helper Scripts
The scripts/ directory contains Python utilities for automated diagram generation and quality verification:
generate_flowchart.py
Convert text descriptions into TikZ flowcharts with automatic quality checks:
from scripts.generate_flowchart import text_to_flowchart, create_with_verification
description = """
1. Screen participants (n=500)
2. Exclude if age < 18 (n=150)
3. Randomize remaining (n=350)
4. Treatment group (n=175)
5. Control group (n=175)
6. Follow up at 3 months
7. Analyze data
"""
# Generate TikZ code
tikz_code = text_to_flowchart(description)
with open('methodology_flow.tex', 'w') as f:
f.write(tikz_code)
# Or create with automatic verification
success = create_with_verification(
description,
output='methodology_flow',
verify=True
)
circuit_generator.py
Generate circuit diagrams using Schemdraw with quality verification:
from scripts.circuit_generator import CircuitBuilder
builder = CircuitBuilder()
builder.add_voltage_source('Vs', '5V')
builder.add_resistor('R1', '1kΩ')
builder.add_capacitor('C1', '10µF')
builder.add_ground()
# Save with automatic quality checks
builder.save('circuit.pdf', verify=True)
# Access quality report
print(builder.quality_report)
pathway_diagram.py
Create biological pathway diagrams with overlap detection:
from scripts.pathway_diagram import PathwayGenerator
gen = PathwayGenerator(
colorblind_safe=True,
auto_spacing=True # Automatically adjust spacing to prevent overlaps
)
gen.add_node('Receptor', type='protein', position=(1, 5))
gen.add_node('Kinase', type='protein', position=(3, 5))
gen.add_edge('Receptor', 'Kinase', interaction='activation')
# Save with quality verification
quality_report = gen.save('pathway.pdf', verify=True)
# Iteratively refine if needed
if quality_report['status'] != 'PASS':
gen.auto_adjust_spacing()
gen.save('pathway.pdf', verify=True)
compile_tikz.py
Standalone TikZ compilation utility with quality checks:
# Compile TikZ to PDF with verification
python scripts/compile_tikz.py flowchart.tex -o flowchart.pdf --verify
# Generate PNG with quality report
python scripts/compile_tikz.py flowchart.tex -o flowchart.pdf --png --dpi 300 --verify
# Preview with quality overlay
python scripts/compile_tikz.py flowchart.tex --preview --show-quality
quality_checker.py
Standalone quality verification tool for any diagram:
# Check single diagram
python scripts/quality_checker.py diagram.png
# Check with detailed report
python scripts/quality_checker.py diagram.png --detailed --output-dir reports/
# Batch check multiple diagrams
python scripts/quality_checker.py figures/*.png --batch
# Export visual comparison report
python scripts/quality_checker.py diagram.png --visual-report
# Python API
from scripts.quality_checker import DiagramQualityChecker
checker = DiagramQualityChecker()
# Run all checks
report = checker.check_diagram('diagram.png')
# Access specific checks
overlap_report = checker.check_overlaps('diagram.png')
accessibility_report = checker.check_accessibility('diagram.png')
resolution_report = checker.check_resolution('diagram.png')
# Generate visual report
checker.create_visual_report('diagram.png', output='quality_report.png')
# Batch processing
results = checker.batch_check(['fig1.png', 'fig2.png', 'fig3.png'])
checker.save_batch_report(results, 'batch_quality_report.json')
Templates and Assets
Pre-built templates in assets/ directory provide starting points:
flowchart_template.tex- Methodology flowcharts (CONSORT style)circuit_template.tex- Electrical circuit diagramspathway_template.tex- Biological pathway diagramsblock_diagram_template.tex- System architecture diagramstikz_styles.tex- Reusable style definitions (ALWAYS load this)
All templates use colorblind-safe Okabe-Ito palette and publication-ready styling.
Best Practices Summary
Design Principles
- Clarity over complexity - Simplify, remove unnecessary elements
- Consistent styling - Use templates and style files
- Colorblind accessibility - Use Okabe-Ito palette, redundant encoding
- Appropriate typography - Sans-serif fonts, minimum 7-8 pt
- Vector format - Always use PDF/SVG for publication
Technical Requirements
- Resolution - Vector preferred, or 300+ DPI for raster
- File format - PDF for LaTeX, SVG for web, PNG as fallback
- Color space - RGB for digital, CMYK for print (convert if needed)
- Line weights - Minimum 0.5 pt, typical 1-2 pt
- Text size - 7-8 pt minimum at final size
Integration Guidelines
- Include in LaTeX - Use
\input{}for TikZ,\includegraphics{}for external - Caption thoroughly - Describe all elements and abbreviations
- Reference in text - Explain diagram in narrative flow
- Maintain consistency - Same style across all figures in paper
- Version control - Keep source files (.tex, .py) in repository
Troubleshooting Common Issues
TikZ Compilation Errors
Problem: ! Package tikz Error: I do not know the key '/tikz/...
- Solution: Missing library - add
\usetikzlibrary{...}to preamble
Problem: Overlapping text or elements
- Solution: Run quality checker to identify overlaps:
python scripts/quality_checker.py diagram.png - Solution: Increase
node distance, adjust positioning manually based on overlap report - Solution: Use
auto_spacing=Truein pathway generator for automatic adjustment
Problem: Arrows not connecting properly
- Solution: Use anchor points:
(node.east),(node.north), etc. - Solution: Check overlap report for arrow/node intersections
Python Generation Issues
Problem: Schemdraw elements not aligning
- Solution: Use
.at()method for precise positioning - Solution: Enable
auto_spacingto prevent overlaps
Problem: Matplotlib text rendering issues
- Solution: Set
plt.rcParams['text.usetex'] = Truefor LaTeX rendering - Solution: Ensure LaTeX installation is available
Problem: Export quality poor
- Solution: Increase DPI:
plt.savefig(..., dpi=300, bbox_inches='tight') - Solution: Run resolution checker:
quality_checker.check_resolution(image_path, target_dpi=300)
Problem: Elements overlap after generation
- Solution: Run
detect_overlaps()function to identify problem regions - Solution: Use iterative refinement:
iterative_diagram_refinement(create_function) - Solution: Increase spacing between elements by 20-30%
Quality Check Issues
Problem: False positive overlap detection
- Solution: Adjust threshold:
detect_overlaps(image_path, threshold=0.98) - Solution: Manually review flagged regions in visual report
Problem: Quality checker fails on PDF files
- Solution: Convert PDF to PNG first:
from pdf2image import convert_from_path - Solution: Use PNG output format for quality checks
Problem: Colorblind simulation shows poor contrast
- Solution: Switch to Okabe-Ito palette explicitly in code
- Solution: Add redundant encoding (shapes, patterns, line styles)
- Solution: Increase color saturation and lightness differences
Problem: High-severity overlaps detected
- Solution: Review overlap_report.json for exact positions
- Solution: Increase spacing in those specific regions
- Solution: Re-run with adjusted parameters and verify again
Problem: Visual report generation fails
- Solution: Check Pillow and matplotlib installations
- Solution: Ensure image file is readable:
Image.open(path).verify() - Solution: Check sufficient disk space for report generation
Accessibility Problems
Problem: Colors indistinguishable in grayscale
- Solution: Run accessibility checker:
verify_accessibility(image_path) - Solution: Add patterns, shapes, or line styles for redundancy
- Solution: Increase contrast between adjacent elements
Problem: Text too small when printed
- Solution: Run resolution validator:
validate_resolution(image_path) - Solution: Design at final size, use minimum 7-8 pt fonts
- Solution: Check physical dimensions in resolution report
Problem: Accessibility checks consistently fail
- Solution: Review accessibility_report.json for specific failures
- Solution: Increase color contrast by at least 20%
- Solution: Test with actual grayscale conversion before finalizing
Resources and References
Detailed References
Load these files for comprehensive information on specific topics:
references/tikz_guide.md- Complete TikZ syntax, positioning, styles, and techniquesreferences/diagram_types.md- Catalog of scientific diagram types with examplesreferences/best_practices.md- Publication standards and accessibility guidelinesreferences/python_libraries.md- Guide to Schemdraw, NetworkX, and Matplotlib for diagrams
External Resources
TikZ and LaTeX
- TikZ & PGF Manual: https://pgf-tikz.github.io/pgf/pgfmanual.pdf
- TeXample.net: http://www.texample.net/tikz/ (examples gallery)
- CircuitikZ Manual: https://ctan.org/pkg/circuitikz
Python Libraries
- Schemdraw Documentation: https://schemdraw.readthedocs.io/
- NetworkX Documentation: https://networkx.org/documentation/
- Matplotlib Documentation: https://matplotlib.org/
Publication Standards
- Nature Figure Guidelines: https://www.nature.com/nature/for-authors/final-submission
- Science Figure Guidelines: https://www.science.org/content/page/instructions-preparing-initial-manuscript
- CONSORT Diagram: http://www.consort-statement.org/consort-statement/flow-diagram
Integration with Other Skills
This skill works synergistically with:
- Scientific Writing - Diagrams follow figure best practices
- Scientific Visualization - Shares color palettes and styling
- LaTeX Posters - Reuse TikZ styles for poster diagrams
- Research Grants - Methodology diagrams for proposals
- Peer Review - Evaluate diagram clarity and accessibility
Quick Reference Checklist
Before submitting diagrams, verify:
Visual Quality
- Vector format (PDF/SVG) or 300+ DPI raster
- No overlapping elements (verified by quality checker)
- Adequate spacing between all components
- Clean, professional alignment
- All arrows connect properly to intended targets
Accessibility
- Colorblind-safe palette (Okabe-Ito) used
- Works in grayscale (tested with accessibility checker)
- Sufficient contrast between elements (verified)
- Redundant encoding where appropriate (shapes + colors)
- Colorblind simulation passes all checks
Typography and Readability
- Text minimum 7-8 pt at final size
- All elements labeled clearly and completely
- Consistent font family and sizing
- No text overlaps or cutoffs
- Units included where applicable
Publication Standards
- Consistent styling with other figures in manuscript
- Comprehensive caption written with all abbreviations defined
- Referenced appropriately in manuscript text
- Meets journal-specific dimension requirements
- Exported in required format for journal (PDF/EPS/TIFF)
Quality Verification (Required)
- Ran
run_quality_checks()and achieved PASS status - Reviewed overlap detection report (zero high-severity overlaps)
- Passed accessibility verification (grayscale and colorblind)
- Resolution validated at target DPI (300+ for print)
- Visual quality report generated and reviewed
- All quality reports saved with figure files
Documentation and Version Control
- Source files (.tex, .py) saved for future revision
- Quality reports archived in
quality_reports/directory - Configuration parameters documented (colors, spacing, sizes)
- Git commit includes source, output, and quality reports
- README or comments explain how to regenerate figure
Final Integration Check
- Figure displays correctly in compiled manuscript
- Cross-references work (
\ref{}points to correct figure) - Figure number matches text citations
- Caption appears on correct page relative to figure
- No compilation warnings or errors related to figure
Use this skill to create clear, accessible, publication-quality diagrams that effectively communicate complex scientific concepts. The integrated quality verification workflow ensures all diagrams meet professional standards before publication.