Claude Code Plugins

Community-maintained marketplace

Feedback

cellchat-pkg-local-complete

@Ketomihine/my_skills
0
0

CellChat 包源码随附的本地教程 + Rd 转换的函数文档 + R 源码 HTML - 完整覆盖173个文件

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name cellchat-pkg-local-complete
description CellChat 包源码随附的本地教程 + Rd 转换的函数文档 + R 源码 HTML - 完整覆盖173个文件

CellChat-Pkg-Local-Complete Skill

Comprehensive assistance with CellChat package for cell-cell communication analysis, generated from official documentation and source code.

When to Use This Skill

This skill should be triggered when:

Data Preparation & Object Creation:

  • Converting single-cell data from Seurat, SingleCellExperiment, or AnnData objects to CellChat
  • Preparing normalized expression matrices and cell metadata for CellChat analysis
  • Setting up CellChat objects from different data formats (count matrices, spatial data)
  • Handling data input issues from Python/Scanpy or other single-cell tools

Cell-Cell Communication Analysis:

  • Inferring ligand-receptor interactions and signaling pathways
  • Computing communication probabilities and network analysis
  • Analyzing spatially resolved cell-cell communication
  • Performing comparative analysis across conditions or time points

Network Analysis & Visualization:

  • Visualizing communication networks using hierarchy, circle, or chord diagrams
  • Computing network centrality measures to identify key signaling players
  • Creating spatial plots of communication on tissue sections
  • Extracting and filtering specific communications of interest

Advanced Applications:

  • Integrating custom ligand-receptor databases
  • Analyzing contact-dependent signaling
  • Projecting expression data onto protein-protein interaction networks
  • Batch correction and multi-sample analysis

Troubleshooting & Optimization:

  • Debugging issues with object creation or data conversion
  • Optimizing parameters for communication inference
  • Handling spatial transcriptomics data from different platforms
  • Understanding and customizing analysis workflows

Quick Reference

Core Examples

Example 1: Create CellChat object from Seurat

library(CellChat)
cellchat <- createCellChat(object = seurat.obj, group.by = "ident", assay = "RNA")

Example 2: Create from expression matrix

cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels")

Example 3: Set up database and preprocess

cellchat@DB <- CellChatDB.human
cellchat <- subsetData(cellchat)
cellchat <- identifyOverExpressedGenes(cellchat)
cellchat <- identifyOverExpressedInteractions(cellchat)

Example 4: Infer communication network

cellchat <- computeCommunProb(cellchat)
cellchat <- computeCommunProbPathway(cellchat)
cellchat <- aggregateNet(cellchat)

Example 5: Extract communications

# All communications
df.net <- subsetCommunication(cellchat)

# Specific pathways
df.net <- subsetCommunication(cellchat, signaling = c("WNT", "TGFb"))

# Specific cell groups
df.net <- subsetCommunication(cellchat, sources.use = c(1,2), targets.use = c(4,5))

Example 6: Visualize signaling network

netVisual(cellchat, signaling = "TGFb", layout = "hierarchy")

Example 7: Network centrality analysis

cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP")
netAnalysis_signalingRole_network(cellchat, signaling = "TGFb")

Example 8: Spatial data setup

cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels",
                          coordinates = coordinates, spatial.factors = spatial.factors)

Example 9: Data conversion from AnnData

library(anndata)
ad <- read_h5ad("scanpy_object.h5ad")
counts <- t(as.matrix(ad$X))
library.size <- Matrix::colSums(counts)
data.input <- as(log1p(Matrix::t(Matrix::t(counts)/library.size) * 10000), "dgCMatrix")
meta <- ad$obs

Example 10: Rank signaling pathways

rankNet(cellchat, mode = "single", measure = "weight")

Key Concepts

Core CellChat Objects:

  • cellchat@data: Normalized expression data
  • cellchat@meta: Cell metadata and group information
  • cellchat@net: Ligand-receptor level communication network
  • cellchat@netP: Pathway level communication network
  • cellchat@idents: Cell group identities

Data Requirements:

  • Expression Matrix: Genes in rows, cells in columns, normalized data required
  • Cell Metadata: Dataframe with cell labels and sample information
  • Spatial Data: Coordinates and distance factors for spatial analysis

Communication Inference:

  • Probability Calculation: Based on mass action law integrating expression and prior knowledge
  • Permutation Testing: Statistical significance assessment
  • Pathway Aggregation: Summarizing multiple L-R pairs per signaling pathway

Network Analysis Types:

  • Functional Networks: Based on inferred communication probabilities
  • Structural Networks: Based on ligand-receptor interaction structure
  • Centrality Measures: Identifying key senders, receivers, mediators, influencers

Reference Files

This skill includes comprehensive documentation in references/:

api_functions.md (134 pages)

Complete API documentation for all CellChat functions:

  • subsetCommunication: Extract specific cell-cell communications
  • computeAveExpr: Calculate average expression per cell group
  • netVisual_embedding: 2D visualization of signaling manifolds
  • rankNet: Rank signaling networks by information flow
  • netAnalysis_computeCentrality: Network centrality analysis
  • computeExpr_antagonist: Model antagonist effects

cpp_source.md (2 pages)

C++ source code for performance-critical operations:

  • ComputeSNN: Shared nearest neighbor computation
  • Rcpp bindings for high-performance calculations

r_source.md (10 pages)

R source code for core functionality:

  • visualization: Network visualization functions and themes
  • Color palettes and plotting utilities
  • Core analysis algorithms

tutorials.md (27 pages)

Comprehensive tutorials covering:

  • Spatial transcriptomics analysis: Complete workflow for spatial data
  • Data preparation: From various single-cell formats
  • Network inference: Step-by-step communication analysis
  • Visualization: Multiple plotting options and customization
  • Advanced applications: Custom databases and comparative analysis

Working with This Skill

For Beginners

  1. Start with Data Preparation: Use the tutorials to understand data input requirements
  2. Basic Workflow: Follow the spatial transcriptomics tutorial for a complete example
  3. Simple Visualizations: Begin with circle plots and hierarchy diagrams
  4. Reference Functions: Use api_functions.md for detailed parameter explanations

For Intermediate Users

  1. Custom Analyses: Explore different type parameters in computeAveExpr
  2. Advanced Visualizations: Try chord diagrams and spatial plots
  3. Network Analysis: Use centrality measures to identify key regulators
  4. Multi-sample Analysis: Learn comparative analysis across conditions

For Advanced Users

  1. Custom Databases: Update CellChatDB with domain-specific interactions
  2. Spatial Applications: Adapt parameters for different spatial technologies
  3. Performance Optimization: Use C++ functions for large datasets
  4. Integration Workflows: Combine with other single-cell analysis tools

Navigation Tips

  • Function Lookup: Search api_functions.md for specific function names
  • Parameter Details: Each function entry includes complete parameter descriptions
  • Code Examples: All tutorials include reproducible R code
  • Troubleshooting: Check the tutorials section for common issues and solutions

Resources

references/

Organized documentation extracted from official sources:

  • Detailed explanations of all parameters and return values
  • Code examples with proper language annotations
  • Links to original documentation for deeper exploration
  • Table of contents for quick navigation

scripts/

Add helper scripts here for common automation tasks:

  • Data conversion utilities
  • Custom visualization functions
  • Batch processing workflows

assets/

Store templates and examples:

  • Example datasets in proper format
  • Custom ligand-receptor databases
  • Configuration files for different analysis types

Common Workflows

Basic CellChat Analysis

# 1. Create object
cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels")

# 2. Set database and preprocess
cellchat@DB <- CellChatDB.human
cellchat <- subsetData(cellchat)
cellchat <- normalizeData(cellchat)

# 3. Identify over-expressed genes/interactions
cellchat <- identifyOverExpressedGenes(cellchat)
cellchat <- identifyOverExpressedInteractions(cellchat)

# 4. Infer communication
cellchat <- computeCommunProb(cellchat)
cellchat <- computeCommunProbPathway(cellchat)
cellchat <- aggregateNet(cellchat)

# 5. Visualize
netVisual(cellchat, signaling = "TGFb")

Spatial Transcriptomics Analysis

# 1. Create with spatial information
cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels",
                          coordinates = coordinates, spatial.factors = spatial.factors)

# 2. Spatial communication inference
cellchat <- computeCommunProb(cellchat, contact.dependent = FALSE,
                             interaction.range = 250, scale.distance = 1)

# 3. Spatial visualization
netVisual_spatial(cellchat, signaling = "WNT")

Comparative Analysis

# 1. Create separate objects for each condition
cellchat1 <- createCellChat(object = data.input1, meta = meta1, group.by = "labels")
cellchat2 <- createCellChat(object = data.input2, meta = meta2, group.by = "labels")

# 2. Process each object
# ... (preprocessing steps for each)

# 3. Merge for comparison
cellchat <- mergeCellChat(cellchat1, cellchat2, add.names = c("LS", "NL"))

# 4. Compare signaling
rankNet(cellchat, mode = "comparison", comparison = c(1, 2))

Notes

  • Coverage: This skill covers 173 files including tutorials, API docs, and source code
  • Languages: Primarily R with some C++ components
  • Data Types: Supports scRNA-seq, spatial transcriptomics, and bulk data
  • Integration: Works with Seurat, SingleCellExperiment, AnnData objects
  • Documentation: Preserves original structure and examples from official sources

Updating

To refresh this skill with updated documentation:

  1. Restart the local CellChat documentation server
  2. Re-run the documentation scraper with the same configuration
  3. The skill will be rebuilt with the latest information and examples