Claude Code Plugins

Community-maintained marketplace

Feedback

monocle3-truly-complete

@Ketomihine/my_skills
0
0

Monocle3 单细胞轨迹分析工具包 - 100%覆盖文档(18个文件:完整教程+API+轨迹推断)

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name monocle3-truly-complete
description Monocle3 单细胞轨迹分析工具包 - 100%覆盖文档(18个文件:完整教程+API+轨迹推断)

Monocle3-Truly-Complete Skill

Comprehensive assistance with Monocle 3 for single-cell trajectory analysis, including co-embedding, projection, and advanced visualization techniques.

When to Use This Skill

This skill should be triggered when:

Data Analysis & Processing

  • Loading and preprocessing single-cell data - Working with CellDataSet objects, UMI filtering, size factor estimation
  • Co-embedding multiple datasets - Combining reference and query datasets for comparative analysis
  • Projecting query data onto reference - Using transform models to map new data into existing reference space
  • Cell type label transfer - Transferring annotations from reference to query cells using nearest neighbor indexing

Installation & Setup

  • Installing Monocle 3 - Setting up R environment, Bioconductor dependencies, GitHub installation
  • Troubleshooting installation issues - Resolving gdal, Xcode, gfortran, or reticulate errors
  • Testing installation - Verifying that Monocle 3 is properly installed and functional

Visualization & Analysis

  • Creating trajectory plots - Generating 2D/3D UMAP visualizations with cell type annotations
  • Comparing datasets - Visualizing combined reference and query datasets
  • Interactive plotting - Working with plotly for 3D trajectory visualizations

Quick Reference

Essential Code Examples

Example 1: Basic Installation

# Install Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install(version = "3.21")

# Install Monocle 3
devtools::install_github('cole-trapnell-lab/monocle3')

Example 2: Loading Reference and Query Datasets

library(monocle3)
library(Matrix)

# Load reference dataset
cds_ref <- new_cell_data_set(matrix_ref,
                             cell_metadata = cell_ann_ref,
                             gene_metadata = gene_ann_ref)

# Load query dataset
cds_qry <- new_cell_data_set(matrix_qry,
                             cell_metadata = cell_ann_qry,
                             gene_metadata = gene_ann_qry)

Example 3: Gene Filtering and UMI Cutoffs

# Find shared genes
genes_shared <- intersect(row.names(cds_ref), row.names(cds_qry))

# Keep only shared genes
cds_ref <- cds_ref[genes_shared,]
cds_qry <- cds_qry[genes_shared,]

# Apply UMI cutoffs (example: 1000)
cds_ref <- cds_ref[, colData(cds_ref)[['Total_mRNAs']] >= 1000]
cds_qry <- cds_qry[, colData(cds_qry)[['n.umi']] >= 1000]

Example 4: Processing Reference Dataset

# Estimate size factors
cds_ref <- estimate_size_factors(cds_ref)
cds_qry <- estimate_size_factors(cds_qry)

# Process reference with PCA and UMAP
cds_ref <- preprocess_cds(cds_ref, num_dim=100)
cds_ref <- reduce_dimension(cds_ref, build_nn_index=TRUE)

# Save transform models for projection
save_transform_models(cds_ref, 'cds_ref_test_models')

Example 5: Project Query Data into Reference Space

# Load reference transform models
cds_qry <- load_transform_models(cds_qry, 'cds_ref_test_models')

# Apply transformations to query data
cds_qry <- preprocess_transform(cds_qry)
cds_qry <- reduce_dimension_transform(cds_qry)

Example 6: Cell Type Label Transfer

# Transfer cell type labels from reference to query
cds_qry <- transfer_cell_labels(cds_qry,
                                reduction_method='UMAP',
                                ref_coldata=colData(cds_ref),
                                ref_column_name='Main_cell_type',
                                query_column_name='cell_type_xfr',
                                transform_models_dir='cds_ref_test_models')

# Fix any missing labels
cds_qry <- fix_missing_cell_labels(cds_qry,
                                   reduction_method='UMAP',
                                   from_column_name='cell_type_xfr',
                                   to_column_name='cell_type_fix')

Example 7: Combining and Visualizing Datasets

# Label datasets for visualization
colData(cds_ref)[['data_set']] <- 'reference'
colData(cds_qry)[['data_set']] <- 'query'

# Combine datasets
cds_combined <- combine_cds(list(cds_ref, cds_qry),
                            keep_all_genes=TRUE,
                            cell_names_unique=TRUE,
                            keep_reduced_dims=TRUE)

# Plot combined data
plot_cells(cds_combined, color_cells_by='data_set')

Example 8: Basic Visualization

# Plot individual datasets
plot_cells(cds_ref)
plot_cells(cds_qry)

# Color by specific metadata
plot_cells(cds_combined, color_cells_by='Main_cell_type')

Key Concepts

Core Monocle 3 Objects

  • CellDataSet (cds) - Primary data structure containing expression matrix, cell metadata, and gene metadata
  • Transform Models - Saved PCA/UMAP transformations from reference data for projecting query data
  • Nearest Neighbor Index - Spatial index used for efficient cell type label transfer

Analysis Workflow

  1. Data Loading - Import expression matrices and metadata
  2. Preprocessing - Filter genes, apply UMI cutoffs, estimate size factors
  3. Reference Processing - Create PCA/UMAP embeddings with nearest neighbor indexing
  4. Projection - Transform query data into reference space using saved models
  5. Label Transfer - Transfer annotations from reference to query cells
  6. Visualization - Plot trajectories and compare datasets

Key Parameters

  • build_nn_index=TRUE - Required for cell type label transfer
  • num_dim - Number of PCA dimensions (typically 50-100)
  • reduction_method - 'UMAP' or 'PCA' for visualization and label transfer

Reference Files

This skill includes comprehensive documentation in references/:

getting_started.md

  • 17 pages of detailed installation and projection workflows
  • Installation Guide - Complete setup with troubleshooting for gdal, Xcode, gfortran errors
  • Projection Tutorial - Step-by-step co-embedding and label transfer workflow
  • Code Examples - 26 practical examples covering data loading, processing, and visualization

visualization.md

  • Interactive 3D plotting with plotly integration
  • Advanced trajectory visualizations showing cell partitions
  • Web-based exploration tools for large datasets

Use view to read specific reference files when detailed information is needed.

Working with This Skill

For Beginners

  1. Start with installation - Follow the getting_started.md installation guide carefully
  2. Use the projection workflow - The co-embedding tutorial provides a complete end-to-end example
  3. Master the basics first - Focus on data loading, gene filtering, and basic visualization before attempting advanced projection

For Intermediate Users

  1. Customize projection parameters - Adjust num_dim, UMI cutoffs, and visualization options
  2. Batch process multiple datasets - Use the transform model system for efficient analysis of many query datasets
  3. Troubleshoot common issues - Reference the installation troubleshooting section for gdal, Xcode, and gfortran problems

For Advanced Users

  1. Optimize performance - Use BPCells for large datasets and tune nearest neighbor indexing
  2. Custom visualization - Extend plotly visualizations for interactive exploration
  3. Pipeline integration - Incorporate Monocle 3 into larger single-cell analysis workflows

Navigation Tips

  • Search by function name - Quick reference includes the most commonly used functions
  • Check examples first - Each concept has multiple code examples with different approaches
  • Reference the original URLs - Documentation includes links to official Monocle 3 documentation

Resources

references/

Organized documentation extracted from official sources:

  • Step-by-step tutorials with complete code workflows
  • Installation troubleshooting with specific error solutions
  • Multiple code examples showing different approaches to the same task
  • Links to original documentation for further reading

scripts/

Add helper scripts for common automation tasks such as:

  • Batch projection of multiple query datasets
  • Automated installation scripts
  • Custom visualization functions

assets/

Add templates and examples such as:

  • Example metadata files showing proper formatting
  • Configuration templates for common analysis scenarios
  • Boilerplate code for starting new projects

Notes

  • This skill covers Monocle 3 version 1.4.25+ with Bioconductor 3.21 and R 4.4.1+
  • Projection workflow is the key feature - enabling comparison of large datasets without memory issues
  • Transform models can be reused across multiple query datasets for consistent analysis
  • Code examples include both simple and advanced approaches for flexibility

Updating

To refresh this skill with updated documentation:

  1. Re-run the scraper with the same configuration
  2. The skill will be rebuilt with the latest information from the official Monocle 3 documentation