Claude Code Plugins

Community-maintained marketplace

Feedback

ReasoningBank Intelligence

@KingOfTheAce2/project-gouda
0
0

Implement adaptive learning with ReasoningBank for pattern recognition, strategy optimization, and continuous improvement. Use when building self-learning agents, optimizing workflows, or implementing meta-cognitive systems.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ReasoningBank Intelligence
description Implement adaptive learning with ReasoningBank for pattern recognition, strategy optimization, and continuous improvement. Use when building self-learning agents, optimizing workflows, or implementing meta-cognitive systems.

ReasoningBank Intelligence

What This Skill Does

Implements ReasoningBank's adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.

Prerequisites

  • agentic-flow v1.5.11+
  • AgentDB v1.0.4+ (for persistence)
  • Node.js 18+

Quick Start

import { ReasoningBank } from 'agentic-flow/reasoningbank';

// Initialize ReasoningBank
const rb = new ReasoningBank({
  persist: true,
  learningRate: 0.1,
  adapter: 'agentdb' // Use AgentDB for storage
});

// Record task outcome
await rb.recordExperience({
  task: 'code_review',
  approach: 'static_analysis_first',
  outcome: {
    success: true,
    metrics: {
      bugs_found: 5,
      time_taken: 120,
      false_positives: 1
    }
  },
  context: {
    language: 'typescript',
    complexity: 'medium'
  }
});

// Get optimal strategy
const strategy = await rb.recommendStrategy('code_review', {
  language: 'typescript',
  complexity: 'high'
});

Core Features

1. Pattern Recognition

// Learn patterns from data
await rb.learnPattern({
  pattern: 'api_errors_increase_after_deploy',
  triggers: ['deployment', 'traffic_spike'],
  actions: ['rollback', 'scale_up'],
  confidence: 0.85
});

// Match patterns
const matches = await rb.matchPatterns(currentSituation);

2. Strategy Optimization

// Compare strategies
const comparison = await rb.compareStrategies('bug_fixing', [
  'tdd_approach',
  'debug_first',
  'reproduce_then_fix'
]);

// Get best strategy
const best = comparison.strategies[0];
console.log(`Best: ${best.name} (score: ${best.score})`);

3. Continuous Learning

// Enable auto-learning from all tasks
await rb.enableAutoLearning({
  threshold: 0.7,        // Only learn from high-confidence outcomes
  updateFrequency: 100   // Update models every 100 experiences
});

Advanced Usage

Meta-Learning

// Learn about learning
await rb.metaLearn({
  observation: 'parallel_execution_faster_for_independent_tasks',
  confidence: 0.95,
  applicability: {
    task_types: ['batch_processing', 'data_transformation'],
    conditions: ['tasks_independent', 'io_bound']
  }
});

Transfer Learning

// Apply knowledge from one domain to another
await rb.transferKnowledge({
  from: 'code_review_javascript',
  to: 'code_review_typescript',
  similarity: 0.8
});

Adaptive Agents

// Create self-improving agent
class AdaptiveAgent {
  async execute(task: Task) {
    // Get optimal strategy
    const strategy = await rb.recommendStrategy(task.type, task.context);

    // Execute with strategy
    const result = await this.executeWithStrategy(task, strategy);

    // Learn from outcome
    await rb.recordExperience({
      task: task.type,
      approach: strategy.name,
      outcome: result,
      context: task.context
    });

    return result;
  }
}

Integration with AgentDB

// Persist ReasoningBank data
await rb.configure({
  storage: {
    type: 'agentdb',
    options: {
      database: './reasoning-bank.db',
      enableVectorSearch: true
    }
  }
});

// Query learned patterns
const patterns = await rb.query({
  category: 'optimization',
  minConfidence: 0.8,
  timeRange: { last: '30d' }
});

Performance Metrics

// Track learning effectiveness
const metrics = await rb.getMetrics();
console.log(`
  Total Experiences: ${metrics.totalExperiences}
  Patterns Learned: ${metrics.patternsLearned}
  Strategy Success Rate: ${metrics.strategySuccessRate}
  Improvement Over Time: ${metrics.improvement}
`);

Best Practices

  1. Record consistently: Log all task outcomes, not just successes
  2. Provide context: Rich context improves pattern matching
  3. Set thresholds: Filter low-confidence learnings
  4. Review periodically: Audit learned patterns for quality
  5. Use vector search: Enable semantic pattern matching

Troubleshooting

Issue: Poor recommendations

Solution: Ensure sufficient training data (100+ experiences per task type)

Issue: Slow pattern matching

Solution: Enable vector indexing in AgentDB

Issue: Memory growing large

Solution: Set TTL for old experiences or enable pruning

Learn More

  • ReasoningBank Guide: agentic-flow/src/reasoningbank/README.md
  • AgentDB Integration: packages/agentdb/docs/reasoningbank.md
  • Pattern Learning: docs/reasoning/patterns.md