Claude Code Plugins

Community-maintained marketplace

Feedback

Systematic agent design and configuration for Claude multiagent systems. Use when creating AI agents with well-defined roles, capabilities, and behaviors. Generates standardized JSON configurations for orchestrator agents (workflow coordination), specialist agents (domain expertise), retrieval agents (information gathering), execution agents (action execution), analysis agents (data processing), and validation agents (quality assurance). Essential for building production-ready multiagent architectures with proper tool definitions, communication protocols, error handling, and performance targets.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name agent-creator
description Systematic agent design and configuration for Claude multiagent systems. Use when creating AI agents with well-defined roles, capabilities, and behaviors. Generates standardized JSON configurations for orchestrator agents (workflow coordination), specialist agents (domain expertise), retrieval agents (information gathering), execution agents (action execution), analysis agents (data processing), and validation agents (quality assurance). Essential for building production-ready multiagent architectures with proper tool definitions, communication protocols, error handling, and performance targets.

Agent Creator

Systematic framework for designing and configuring AI agents in multiagent systems.

Quick Start

Generate a new agent configuration:

# Orchestrator agent
python scripts/generate_agent.py orchestrator task-coord-001 \
  "Task Coordinator" \
  "Coordinates multi-agent workflows for complex tasks" \
  output/task_coordinator.json

# Specialist agent (requires domain parameter)
python scripts/generate_agent.py specialist code-reviewer-001 \
  "Python Code Reviewer" \
  "Reviews Python code for quality and security" \
  python \
  output/code_reviewer.json

# Other agent types
python scripts/generate_agent.py <type> <id> <name> <description> [domain] [output_file]

Validate configuration:

python scripts/validate_agent.py output/task_coordinator.json

Agent Types

Orchestrator

Purpose: Coordinate multiple agents in complex workflows

When to use:

  • Breaking down complex tasks into subtasks
  • Delegating work to specialist agents
  • Aggregating results from multiple sources
  • Managing workflow execution and error recovery

Key capabilities: task_decomposition, agent_selection, result_aggregation, workflow_execution

Specialist

Purpose: Deep expertise in specific domains

When to use:

  • Domain-specific operations requiring specialized knowledge
  • Tasks needing deep technical expertise
  • Operations with strict domain compliance requirements

Key capabilities: Domain-specific analysis, validation, processing

Note: Requires domain parameter (e.g., "python", "finance", "security")

Retrieval

Purpose: Search, retrieve, and synthesize information

When to use:

  • Multi-source information gathering
  • Research requiring query rewriting and refinement
  • Cross-source information synthesis

Key capabilities: semantic_search, multi_hop_retrieval, query_rewriting, source_synthesis

Execution

Purpose: Execute actions in target systems

When to use:

  • Performing operations in external systems
  • Managing transactional operations
  • Implementing rollback and recovery

Key capabilities: action_execution, transaction_management, rollback_handling

Analysis

Purpose: Process and analyze data

When to use:

  • Data processing and statistical analysis
  • Pattern recognition and anomaly detection
  • Generating insights and recommendations

Key capabilities: data_processing, statistical_analysis, pattern_recognition, insight_generation

Validation

Purpose: Quality assurance and compliance checking

When to use:

  • Validating outputs against requirements
  • Compliance and standards checking
  • Quality assurance and error detection

Key capabilities: requirements_validation, compliance_checking, quality_assessment

Configuration Structure

Generated agents use a comprehensive JSON structure with 10 major sections:

1. Identity

{
  "agent_id": "unique-identifier",
  "agent_type": "orchestrator|specialist|retrieval|execution|analysis|validation",
  "name": "Human-readable name",
  "description": "Purpose and capabilities",
  "version": "1.0.0",
  "created_at": "ISO8601 timestamp"
}

2. Metadata

Project context and dependencies:

  • Author and tags
  • Agent dependencies
  • Environment (development/staging/production)

3. Role Definition

Defines agent's role and authority:

  • Primary role and domain expertise
  • Specific responsibilities
  • Behavioral guidelines
  • Decision authority scope
  • Escalation criteria

4. Capabilities

Technical capabilities and quality standards:

  • Core functions
  • Supported operations
  • Input/output formats
  • Quality standards and metrics

5. Tools

Tool definitions with:

  • Name and description
  • Parameter schemas
  • Return types
  • Error handling
  • Usage examples

6. Communication

Inter-agent communication:

  • Input/output protocols and schemas
  • Message patterns (request, response, notification, query)
  • Coordination with peer/upstream/downstream agents
  • Context handoff protocols

7. State Management

State handling configuration:

  • State type (stateless/stateful/hybrid)
  • Persistence configuration
  • Session management
  • Short-term and long-term memory

8. Error Handling

Error recovery strategies:

  • Error handling strategy (recommend: return_structured_errors)
  • Error type definitions
  • Recovery patterns
  • Retry policies
  • Fallback behaviors
  • Logging configuration

9. Constraints

Operational boundaries:

  • Token budgets and compaction strategies
  • Execution time and tool call limits
  • Scope boundaries (allowed/forbidden operations)
  • Quality gates (validation, approval, testing)

10. Performance

Performance monitoring and optimization:

  • Metrics tracking (completion rate, errors, latency, tokens)
  • Performance targets
  • Optimization features (caching, parallel execution, batching)

Customizing Generated Agents

Generated configurations provide complete structures with sensible defaults. Customize by editing the JSON:

Essential Customizations

1. Metadata

"metadata": {
  "author": "your-team",
  "tags": ["backend", "api", "production"],
  "dependencies": ["retrieval-agent-001"],
  "environment": "production"
}

2. Add Tools

"tools": [{
  "name": "execute_query",
  "description": "Execute SQL query against database",
  "parameters": {
    "query": {
      "type": "string",
      "required": true,
      "description": "SQL SELECT statement"
    },
    "limit": {
      "type": "integer",
      "default": 100
    }
  },
  "returns": {"type": "array"},
  "errors": {
    "InvalidQuery": "SQL syntax error",
    "Timeout": "Query exceeded time limit"
  },
  "example": {
    "input": {"query": "SELECT * FROM users LIMIT 10"},
    "output": [{"user_id": 1, "name": "Alice"}]
  }
}]

3. Configure State Management

"state_management": {
  "state_type": "stateful",
  "persistence": {
    "enabled": true,
    "storage_backend": "redis",
    "retention_policy": "7d"
  },
  "session_management": {
    "enabled": true,
    "timeout": 3600,
    "cleanup_policy": "auto"
  }
}

4. Set Token Budgets

"constraints": {
  "token_budget": {
    "max_tokens": 50000,
    "warning_threshold": 40000,
    "compaction_strategy": "preserve_recent_and_critical"
  },
  "execution_limits": {
    "max_execution_time": 300000,
    "max_tool_calls": 20,
    "max_retries": 3
  },
  "scope_boundaries": {
    "allowed_operations": ["read", "analyze", "report"],
    "forbidden_operations": ["delete", "modify"],
    "data_access_rules": ["read_only"]
  }
}

5. Define Agent Coordination

"communication": {
  "coordination": {
    "peer_agents": ["analysis-agent-002"],
    "upstream_agents": ["orchestrator-001"],
    "downstream_agents": ["execution-agent-001", "validation-agent-001"],
    "handoff_protocol": {
      "required_context": ["task_id", "input_data", "constraints"],
      "response_format": "structured_result"
    }
  }
}

Workflows

Creating a New Agent

  1. Generate base configuration:

    python scripts/generate_agent.py <type> <id> <name> <description> [domain] output.json
    
  2. Validate structure:

    python scripts/validate_agent.py output.json
    
  3. Customize the JSON for your specific needs:

    • Add specific tools with full documentation
    • Configure state management if stateful
    • Set token budgets and constraints
    • Define communication protocols
    • Specify coordination with other agents
  4. Re-validate after customization

  5. Integrate into your agent system

Building a Multi-Agent System

  1. Identify agent roles needed for your use case

  2. Create orchestrator agent first:

    python scripts/generate_agent.py orchestrator main-coord "Main Coordinator" \
      "Coordinates all agents in the system" coordinator.json
    
  3. Create specialist agents for each domain:

    python scripts/generate_agent.py specialist data-analyst "Data Analyst" \
      "Analyzes business data" analytics analyst.json
    
  4. Create supporting agents (retrieval, execution, validation):

    python scripts/generate_agent.py retrieval info-retrieval "Information Retriever" \
      "Gathers information from multiple sources" retrieval.json
    
  5. Configure coordination in each agent's communication.coordination section:

    • Set upstream_agents (who delegates to this agent)
    • Set downstream_agents (who this agent delegates to)
    • Set peer_agents (same-level collaborators)
    • Define handoff_protocol (what context to pass)
  6. Validate all agents

  7. Test agent interactions before deployment

Best Practices

Agent Design

1. Single Responsibility: Each agent should have one clear purpose

  • ✅ "Python Code Reviewer" - specific and focused
  • ❌ "Code Reviewer and Deployer" - multiple responsibilities

2. Clear Boundaries: Define what the agent can and cannot do

  • Set explicit allowed_operations and forbidden_operations
  • Define data access rules
  • Specify decision authority scope

3. Explicit Communication: Define protocols clearly

  • Specify input/output schemas
  • Document message patterns
  • Define handoff protocols for agent coordination

4. Error Recovery: Always plan for failures

  • Use return_structured_errors strategy
  • Define recovery patterns for common errors
  • Configure retry policies appropriately
  • Implement fallback behaviors

5. Token Awareness: Respect context limits

  • Set realistic token budgets
  • Define warning thresholds (typically 80%)
  • Specify compaction strategies
  • Monitor token usage in performance metrics

Configuration Quality

Essential Fields to Populate:

  • role_definition.responsibilities - be specific
  • capabilities.core_functions - list all key capabilities
  • tools - full documentation with examples for each tool
  • constraints.token_budget - set realistic limits
  • constraints.scope_boundaries - define what agent can do
  • communication.coordination - specify agent relationships
  • error_handling.retry_policy - configure retry behavior
  • performance.targets - set measurable goals

Optional but Recommended:

  • metadata.tags - for categorization
  • metadata.dependencies - for dependency tracking
  • state_management - if agent needs persistence
  • communication.protocols.input.schema - for validation
  • error_handling.recovery_patterns - for common errors

Tool Documentation

Every tool must include:

  1. Clear name: Verb-based (e.g., execute_query, validate_schema)
  2. When to use: Context for tool selection
  3. Complete parameters: Type, required/optional, defaults, descriptions
  4. Return specification: Type and structure
  5. Error documentation: All possible error types
  6. Concrete example: Real input and output

Multi-Agent Coordination

Orchestrator Pattern:

  • Orchestrator delegates to specialists
  • Specialists return results to orchestrator
  • Orchestrator aggregates and returns final result

Pipeline Pattern:

  • Agent A outputs to Agent B
  • Agent B outputs to Agent C
  • Final agent returns result

Consensus Pattern:

  • Multiple peer agents process same input
  • Results aggregated or voted on
  • Best result selected or consensus reached

Reference Documentation

Complete schema reference: See references/schema.md for detailed field-by-field documentation

Example templates: See assets/templates/ for complete examples of each agent type

Validation

The validation script checks:

  • ✅ Required fields present
  • ✅ Valid agent_type
  • ✅ Semantic versioning format
  • ✅ Role definition completeness
  • ✅ Capability specifications
  • ✅ Tool documentation quality
  • ✅ Error handling strategy
  • ✅ Performance target reasonableness

Run validation:

python scripts/validate_agent.py your_agent.json

Validation returns:

  • Errors: Must fix before deployment
  • Warnings: Should address for production quality
  • Info: Optional improvements

Integration with Other Skills

Use prompt-engineering for:

  • Crafting agent system prompts
  • Designing tool documentation format
  • Creating few-shot examples
  • Context management strategies

Use task-decomposition-planning for:

  • Breaking down agent responsibilities
  • Creating Epic → Story → Subtask hierarchies
  • Token budget allocation across tasks
  • Dependency identification

Use requirements-ac-writer for:

  • Defining agent acceptance criteria
  • Creating Given-When-Then scenarios
  • Documenting agent requirements

Quick Reference

Generation Commands

# Orchestrator
generate_agent.py orchestrator <id> <name> <description> [output.json]

# Specialist (requires domain)
generate_agent.py specialist <id> <name> <description> <domain> [output.json]

# Retrieval/Execution/Analysis/Validation
generate_agent.py <type> <id> <name> <description> [output.json]

Agent Types

  • orchestrator → Workflow coordination
  • specialist → Domain expertise
  • retrieval → Information gathering
  • execution → Action execution
  • analysis → Data processing
  • validation → Quality assurance

Key Sections to Customize

  1. metadata - Author, tags, dependencies
  2. tools - Add tool definitions
  3. communication.coordination - Agent relationships
  4. state_management - If stateful
  5. constraints.token_budget - Set limits
  6. constraints.scope_boundaries - Define scope
  7. performance.targets - Set goals

Best Practices Checklist

  • Single, focused responsibility
  • Clear decision authority
  • Complete tool documentation
  • Token budget configured
  • Scope boundaries defined
  • Error recovery patterns
  • Communication protocols specified
  • Performance targets set
  • Validation passing