| name | agent-creator |
| description | Systematic agent design and configuration for Claude multiagent systems. Use when creating AI agents with well-defined roles, capabilities, and behaviors. Generates standardized JSON configurations for orchestrator agents (workflow coordination), specialist agents (domain expertise), retrieval agents (information gathering), execution agents (action execution), analysis agents (data processing), and validation agents (quality assurance). Essential for building production-ready multiagent architectures with proper tool definitions, communication protocols, error handling, and performance targets. |
Agent Creator
Systematic framework for designing and configuring AI agents in multiagent systems.
Quick Start
Generate a new agent configuration:
# Orchestrator agent
python scripts/generate_agent.py orchestrator task-coord-001 \
"Task Coordinator" \
"Coordinates multi-agent workflows for complex tasks" \
output/task_coordinator.json
# Specialist agent (requires domain parameter)
python scripts/generate_agent.py specialist code-reviewer-001 \
"Python Code Reviewer" \
"Reviews Python code for quality and security" \
python \
output/code_reviewer.json
# Other agent types
python scripts/generate_agent.py <type> <id> <name> <description> [domain] [output_file]
Validate configuration:
python scripts/validate_agent.py output/task_coordinator.json
Agent Types
Orchestrator
Purpose: Coordinate multiple agents in complex workflows
When to use:
- Breaking down complex tasks into subtasks
- Delegating work to specialist agents
- Aggregating results from multiple sources
- Managing workflow execution and error recovery
Key capabilities: task_decomposition, agent_selection, result_aggregation, workflow_execution
Specialist
Purpose: Deep expertise in specific domains
When to use:
- Domain-specific operations requiring specialized knowledge
- Tasks needing deep technical expertise
- Operations with strict domain compliance requirements
Key capabilities: Domain-specific analysis, validation, processing
Note: Requires domain parameter (e.g., "python", "finance", "security")
Retrieval
Purpose: Search, retrieve, and synthesize information
When to use:
- Multi-source information gathering
- Research requiring query rewriting and refinement
- Cross-source information synthesis
Key capabilities: semantic_search, multi_hop_retrieval, query_rewriting, source_synthesis
Execution
Purpose: Execute actions in target systems
When to use:
- Performing operations in external systems
- Managing transactional operations
- Implementing rollback and recovery
Key capabilities: action_execution, transaction_management, rollback_handling
Analysis
Purpose: Process and analyze data
When to use:
- Data processing and statistical analysis
- Pattern recognition and anomaly detection
- Generating insights and recommendations
Key capabilities: data_processing, statistical_analysis, pattern_recognition, insight_generation
Validation
Purpose: Quality assurance and compliance checking
When to use:
- Validating outputs against requirements
- Compliance and standards checking
- Quality assurance and error detection
Key capabilities: requirements_validation, compliance_checking, quality_assessment
Configuration Structure
Generated agents use a comprehensive JSON structure with 10 major sections:
1. Identity
{
"agent_id": "unique-identifier",
"agent_type": "orchestrator|specialist|retrieval|execution|analysis|validation",
"name": "Human-readable name",
"description": "Purpose and capabilities",
"version": "1.0.0",
"created_at": "ISO8601 timestamp"
}
2. Metadata
Project context and dependencies:
- Author and tags
- Agent dependencies
- Environment (development/staging/production)
3. Role Definition
Defines agent's role and authority:
- Primary role and domain expertise
- Specific responsibilities
- Behavioral guidelines
- Decision authority scope
- Escalation criteria
4. Capabilities
Technical capabilities and quality standards:
- Core functions
- Supported operations
- Input/output formats
- Quality standards and metrics
5. Tools
Tool definitions with:
- Name and description
- Parameter schemas
- Return types
- Error handling
- Usage examples
6. Communication
Inter-agent communication:
- Input/output protocols and schemas
- Message patterns (request, response, notification, query)
- Coordination with peer/upstream/downstream agents
- Context handoff protocols
7. State Management
State handling configuration:
- State type (stateless/stateful/hybrid)
- Persistence configuration
- Session management
- Short-term and long-term memory
8. Error Handling
Error recovery strategies:
- Error handling strategy (recommend:
return_structured_errors) - Error type definitions
- Recovery patterns
- Retry policies
- Fallback behaviors
- Logging configuration
9. Constraints
Operational boundaries:
- Token budgets and compaction strategies
- Execution time and tool call limits
- Scope boundaries (allowed/forbidden operations)
- Quality gates (validation, approval, testing)
10. Performance
Performance monitoring and optimization:
- Metrics tracking (completion rate, errors, latency, tokens)
- Performance targets
- Optimization features (caching, parallel execution, batching)
Customizing Generated Agents
Generated configurations provide complete structures with sensible defaults. Customize by editing the JSON:
Essential Customizations
1. Metadata
"metadata": {
"author": "your-team",
"tags": ["backend", "api", "production"],
"dependencies": ["retrieval-agent-001"],
"environment": "production"
}
2. Add Tools
"tools": [{
"name": "execute_query",
"description": "Execute SQL query against database",
"parameters": {
"query": {
"type": "string",
"required": true,
"description": "SQL SELECT statement"
},
"limit": {
"type": "integer",
"default": 100
}
},
"returns": {"type": "array"},
"errors": {
"InvalidQuery": "SQL syntax error",
"Timeout": "Query exceeded time limit"
},
"example": {
"input": {"query": "SELECT * FROM users LIMIT 10"},
"output": [{"user_id": 1, "name": "Alice"}]
}
}]
3. Configure State Management
"state_management": {
"state_type": "stateful",
"persistence": {
"enabled": true,
"storage_backend": "redis",
"retention_policy": "7d"
},
"session_management": {
"enabled": true,
"timeout": 3600,
"cleanup_policy": "auto"
}
}
4. Set Token Budgets
"constraints": {
"token_budget": {
"max_tokens": 50000,
"warning_threshold": 40000,
"compaction_strategy": "preserve_recent_and_critical"
},
"execution_limits": {
"max_execution_time": 300000,
"max_tool_calls": 20,
"max_retries": 3
},
"scope_boundaries": {
"allowed_operations": ["read", "analyze", "report"],
"forbidden_operations": ["delete", "modify"],
"data_access_rules": ["read_only"]
}
}
5. Define Agent Coordination
"communication": {
"coordination": {
"peer_agents": ["analysis-agent-002"],
"upstream_agents": ["orchestrator-001"],
"downstream_agents": ["execution-agent-001", "validation-agent-001"],
"handoff_protocol": {
"required_context": ["task_id", "input_data", "constraints"],
"response_format": "structured_result"
}
}
}
Workflows
Creating a New Agent
Generate base configuration:
python scripts/generate_agent.py <type> <id> <name> <description> [domain] output.jsonValidate structure:
python scripts/validate_agent.py output.jsonCustomize the JSON for your specific needs:
- Add specific tools with full documentation
- Configure state management if stateful
- Set token budgets and constraints
- Define communication protocols
- Specify coordination with other agents
Re-validate after customization
Integrate into your agent system
Building a Multi-Agent System
Identify agent roles needed for your use case
Create orchestrator agent first:
python scripts/generate_agent.py orchestrator main-coord "Main Coordinator" \ "Coordinates all agents in the system" coordinator.jsonCreate specialist agents for each domain:
python scripts/generate_agent.py specialist data-analyst "Data Analyst" \ "Analyzes business data" analytics analyst.jsonCreate supporting agents (retrieval, execution, validation):
python scripts/generate_agent.py retrieval info-retrieval "Information Retriever" \ "Gathers information from multiple sources" retrieval.jsonConfigure coordination in each agent's
communication.coordinationsection:- Set
upstream_agents(who delegates to this agent) - Set
downstream_agents(who this agent delegates to) - Set
peer_agents(same-level collaborators) - Define
handoff_protocol(what context to pass)
- Set
Validate all agents
Test agent interactions before deployment
Best Practices
Agent Design
1. Single Responsibility: Each agent should have one clear purpose
- ✅ "Python Code Reviewer" - specific and focused
- ❌ "Code Reviewer and Deployer" - multiple responsibilities
2. Clear Boundaries: Define what the agent can and cannot do
- Set explicit
allowed_operationsandforbidden_operations - Define data access rules
- Specify decision authority scope
3. Explicit Communication: Define protocols clearly
- Specify input/output schemas
- Document message patterns
- Define handoff protocols for agent coordination
4. Error Recovery: Always plan for failures
- Use
return_structured_errorsstrategy - Define recovery patterns for common errors
- Configure retry policies appropriately
- Implement fallback behaviors
5. Token Awareness: Respect context limits
- Set realistic token budgets
- Define warning thresholds (typically 80%)
- Specify compaction strategies
- Monitor token usage in performance metrics
Configuration Quality
Essential Fields to Populate:
- ✅
role_definition.responsibilities- be specific - ✅
capabilities.core_functions- list all key capabilities - ✅
tools- full documentation with examples for each tool - ✅
constraints.token_budget- set realistic limits - ✅
constraints.scope_boundaries- define what agent can do - ✅
communication.coordination- specify agent relationships - ✅
error_handling.retry_policy- configure retry behavior - ✅
performance.targets- set measurable goals
Optional but Recommended:
metadata.tags- for categorizationmetadata.dependencies- for dependency trackingstate_management- if agent needs persistencecommunication.protocols.input.schema- for validationerror_handling.recovery_patterns- for common errors
Tool Documentation
Every tool must include:
- Clear name: Verb-based (e.g.,
execute_query,validate_schema) - When to use: Context for tool selection
- Complete parameters: Type, required/optional, defaults, descriptions
- Return specification: Type and structure
- Error documentation: All possible error types
- Concrete example: Real input and output
Multi-Agent Coordination
Orchestrator Pattern:
- Orchestrator delegates to specialists
- Specialists return results to orchestrator
- Orchestrator aggregates and returns final result
Pipeline Pattern:
- Agent A outputs to Agent B
- Agent B outputs to Agent C
- Final agent returns result
Consensus Pattern:
- Multiple peer agents process same input
- Results aggregated or voted on
- Best result selected or consensus reached
Reference Documentation
Complete schema reference: See references/schema.md for detailed field-by-field documentation
Example templates: See assets/templates/ for complete examples of each agent type
Validation
The validation script checks:
- ✅ Required fields present
- ✅ Valid agent_type
- ✅ Semantic versioning format
- ✅ Role definition completeness
- ✅ Capability specifications
- ✅ Tool documentation quality
- ✅ Error handling strategy
- ✅ Performance target reasonableness
Run validation:
python scripts/validate_agent.py your_agent.json
Validation returns:
- Errors: Must fix before deployment
- Warnings: Should address for production quality
- Info: Optional improvements
Integration with Other Skills
Use prompt-engineering for:
- Crafting agent system prompts
- Designing tool documentation format
- Creating few-shot examples
- Context management strategies
Use task-decomposition-planning for:
- Breaking down agent responsibilities
- Creating Epic → Story → Subtask hierarchies
- Token budget allocation across tasks
- Dependency identification
Use requirements-ac-writer for:
- Defining agent acceptance criteria
- Creating Given-When-Then scenarios
- Documenting agent requirements
Quick Reference
Generation Commands
# Orchestrator
generate_agent.py orchestrator <id> <name> <description> [output.json]
# Specialist (requires domain)
generate_agent.py specialist <id> <name> <description> <domain> [output.json]
# Retrieval/Execution/Analysis/Validation
generate_agent.py <type> <id> <name> <description> [output.json]
Agent Types
orchestrator→ Workflow coordinationspecialist→ Domain expertiseretrieval→ Information gatheringexecution→ Action executionanalysis→ Data processingvalidation→ Quality assurance
Key Sections to Customize
metadata- Author, tags, dependenciestools- Add tool definitionscommunication.coordination- Agent relationshipsstate_management- If statefulconstraints.token_budget- Set limitsconstraints.scope_boundaries- Define scopeperformance.targets- Set goals
Best Practices Checklist
- Single, focused responsibility
- Clear decision authority
- Complete tool documentation
- Token budget configured
- Scope boundaries defined
- Error recovery patterns
- Communication protocols specified
- Performance targets set
- Validation passing