Claude Code Plugins

Community-maintained marketplace

Feedback

Decision support system - SynopticCore asset scoring, OracleInterface for NL→charts, ArchitectForge strategy builder. 15 analysis tools.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ds-star
description Decision support system - SynopticCore asset scoring, OracleInterface for NL→charts, ArchitectForge strategy builder. 15 analysis tools. (project)

DS-STAR - Decision Support System

Location: /Volumes/LegacySafe/SS_III/ds_star/

Fortress Integration Map

DS-STAR Module Fortress Layer Purpose
SynopticCore Layer 3 (AI Agents) Pre-trade asset scoring → risk_sentinel
OracleInterface Layer 5 (Observability) NL queries → dashboards
ArchitectForge Layer 3 (AI Agents) Strategy generation → execution_commander
TransparentAnalyst Layer 5 (Observability) Explainable analysis → logs
Gatekeeper Layer 1 (Foundation) Data normalization → core engine
DataFeeds Layer 1 (Foundation) Market data pipeline
Portfolio Layer 4 (Profit Extraction) Portfolio tracking
VoiceAlerts Layer 5 (Observability) Aurora voice notifications
VectorStore Layer 2 (Kernel) Memory for state machine

MCP Tools Available

These tools are exposed via MCP server for Claude Desktop/CLI:

# Asset scoring (0-100)
mcp__ds-star__synoptic_core_assess(asset="BTC", timeframe="1d")

# Natural language market queries
mcp__ds-star__oracle_query(question="What's the BTC trend?")

# Build strategy from description
mcp__ds-star__architect_forge_build(request="RSI oversold buy", symbols=["BTC/USDT"])

# Normalize raw exchange data
mcp__ds-star__gatekeeper_clean(raw_data={...}, source_hint="binance")

# Transparent analysis with reasoning
mcp__ds-star__transparent_analyst_explain(description="Why SOL pumping?", context={})

Key Modules

ds_star/
├── synoptic_core/      # Smart Asset Score engine
├── oracle_interface/   # NL → Chart analysis
├── architect_forge/    # NL → Strategy builder
├── transparent_analyst/# Explainable reasoning
├── gatekeeper/         # Data normalization
├── data_feeds/         # Market data (NEW)
├── portfolio/          # Portfolio tracking (NEW)
├── voice_alerts/       # Aurora ElevenLabs (NEW)
├── vector_store/       # Embeddings/RAG (NEW)
├── ai_terminal/        # Terminal interface (NEW)
├── mcp_server/         # MCP integration
└── configs/            # System prompts

Usage Examples

# Score an asset
python -c "from ds_star.synoptic_core import assess; print(assess('BTC'))"

# Query market
python -c "from ds_star.oracle_interface import query; print(query('BTC RSI'))"

# Build strategy
python -c "from ds_star.architect_forge import build; print(build('MACD crossover'))"

Data Flow

Market Data → Gatekeeper (clean) → SynopticCore (score) → ArchitectForge (strategy)
                                          ↓
                               TransparentAnalyst (explain)
                                          ↓
                                  VoiceAlerts (Aurora)

Status

  • Files: 15+ analysis modules
  • MCP: 5 tools exposed
  • Fortress: Integrated with Layers 1, 2, 3, 4, 5